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Abstract:

This paper describes Icarus, a language for specifying the behavior of agents that operate in
physical domains.  This language provides a novel metaphor of “reactive logic
programming”’, which makes it convenient to express both extremely reactive control
programs and programs with non-trivial deliberative elements. The key features of Icarus
are the ability to express hierarchical objectives, requirements, and actions, the use of
Prolog-like semantics across function calls, a merged concept of state and action, and a
sequence primitive, all embedded in a reactive control loop that considers every relevant
action on every cycle of the interpreter. We use a body of examples to illustrate these
features, and justify several claims about the expressivity of Icarus relative to existing
reactive languages.

1 Introduction: The space of reactive languages

Every artificial agent operating in a physical domain shares the need to integrate sensing and
acting in service of objectives. However, since real environments are rarely predictable or
even cooperative, agent programmers face a difficult problem; they need to merge goal-
driven behavior with situation-relevant response. This design task calls for specialized agent
architectures and languages. A well-targeted architecture makes agent programming easier
by standardizing an encompassing framework (Albus, 1987; Simmons, 1997); a well-
structured language standardizes primitives that make behavior easy to express. Thus, there
is a role for research in each arena. This paper introduces Icarus, a language for expressing
agent behavior tailored to a broad set of problems that require rich conceptual abstractions
and non-trivial calculation in particularly dynamic environments. Icarus contains many

novel features, viewed both individually and collectively.

The agent design problem has given rise to a number of languages and architectures that
seem equally expressive in the Turing sense, but suited for distinct contexts in practice.
Figure 1 characterizes these contexts by the features of the agent’s environment and its
tasks. We describe environments as static or dynamic, where dynamic environments change
independent of the agent during the conduct of its task. We hold that tasks suggest
particular coding styles, with reactive style employing an iterated situation — action map in
the form of a structured lookup table, and deliberative style using a procedural encoding of

reasoning that can include arbitrarily complex calculations, including search. While reactive
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programs emphasize fast situation response after prior, off-line computation, deliberative
programs emphasize careful run-time thought. The entries in Figure 1 identify the
“typical” use of particular programming metaphors; this is a comment more on historical

trend than theoretical expressivity.

As an example, consider classical planners (Fikes & Nilsson, 1971; Veloso et al., 1995;
Wilkins, 1988), where the classical problem is to plan the construction of a tower of blocks
given the initial world state and a list of primitive action descriptors. These systems
uniformly make the “STRIPS” assumption that nothing in the environment changes except
by agent action, confining their relevance to static worlds. Of course, this is an
overstatement, since classical planners can construct contingent plans that let control flow
branch during execution. They can also be used in an iterated plan-act-replan cycle (Haigh
& Veloso, 1996) that supports reactivity if the environment changes more slowly than the
planner generates plans. Nevertheless, from an historical perspective, classical planning has

been applied primarily to problems in the deliberative, static corner of the spectrum.
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Figure 1: A comparison of agent architectures by task domain.

At the opposite extreme, universal plans (Schoppers, 1987, 1995) and teleoreactive trees
(Nilsson, 1994) focus on reaction in the face of extremely dynamic environments. The
interpreters for these languages employ an iterated sense-lookup-act cycle that lets
applications respond to a spontaneous (and instantaneous) change between any two world
states recognized by the plan. This represents the logical endpoint of reactivity, which we
call a fully reactive design. There are many fully reactive agent architectures (Agre, 1988;
Brooks, 1986; Nilsson, 1990), but since universal plans and teleoreactive trees are closest in
spirit to the design we will introduce, we will use these systems as exemplars throughout
this paper. Note that it is possible (though inconvenient) to define more deliberative
calculations within an action lookup formalism, for example, by computing, storing, and

then reacting to new information state. As a result, universal plans and teleoreactive trees are
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most suited to a range of problems that occupy the dynamic, reactive portion of the

spectrum.

The PRS language (Georgeff, Lansky, & Bessiere, 1985) is best suited for applications
lying between these two extremes because it focuses on procedure execution in the presence
of certain reactive constructs. Firby (1989) and Gat (1992) describe other reactive designs
with a similar thrust. In particular, PRS acts by processing a directed graph of program
statements (e.g., tests, branch points, and goals) to advance the locus of control from a start
node towards an end. When encountered, goals can be spontaneously true (obviating the
need to invoke achievement procedures) and branches can fail, causing the interpreter to
backtrack to the next untried option. However, in contrast with universal plans and
teleoreactive trees, PRS never retries a failed option (unless part of an explicit iteration),

which means that it assumes a more static world.

From the point of view of agent programming, the upper right hand quadrant of Figure 1
encompasses the most interesting and important problems. This is the region of the
task/environment space where significant cognitive loads meet significantly uncooperative
domains. What is missing is an agent design tool that is more reactive than PRS but also
more deliberative than existing fully reactive designs. In theoretical terms, we would like a
language that integrates full reactivity with procedural reasoning. We are now ready to

consider one solution.

2 The Icarus language

Icarus is a language for specifying the behavior of agents that perform cognitively rich,
reactive tasks in highly dynamic environments. The language unites a broad vocabulary for
expressing abstract plans with a procedural framework based on Prolog-like semantics,
under a fully reactive control loop. Because of these features, we say that Icarus supplies

the metaphor of “reactive logic programming”.

This section introduces the Icarus language. We begin with a simple example, and then
discuss the key knowledge representations, the Icarus interpreter, the full set of language
primitives, and a BNF for Icarus. We continue this development in Section 3, which

illustrates the benefits of Icarus via multiple examples.

2.1 A simple Icarus program
Table 1 contains an Icarus program for controlling a bumper car at an amusement park.

The code expresses a goal-directed plan for producing a collision with a car identified by an

input parameter. The top-level plan contains three parts: an objective, a set of requirements
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(or preconditions) and a means field that identifies a method of producing the goal. In
English, this program reads, “In order to be in contact with the car, accelerate hard when
you are both facing and near it”. The Icarus interpreter mirrors these steps, but in a more
reactive way. It begins by asking if the objective is already true (InContactWith is a sensory
test); if so, the plan terminates with success. If the objective is false, the interpreter evaluates
the list of statements in the :requires field, and if they are all true (after recursive descent to
examine the code for Face and Near), the system evaluates the :means clause, which
contains the primitive action to Accelerate. The interpreter returns the Accelerate act, with

instantiated parameters, to an external system that executes it in the physical world.

Table 1. An Icarus program for controlling a bumper car.

(CollideWithCar (?car) (Face (?car)
:objective ({InContactWithCar ?car}) :objective ({Facing ?car})
:requires ((Face 7car) (Near ?car)) :means  ((Turn)))
:means  ((Accelerate *Hard*))) (Near (?car)

) :objective ((Distance ?car 7d)
(Accelerate (™n) :action ({SetPedal })) {< 2d *OneCarLength*})

:means  ((GoForward)))

Like other reactive languages, Icarus applies this evaluation process in an infinite loop,
starting at the top node of the plan on every execution cycle. The top node is the one
referenced when invoking the interpreter, as in “(CollideWithCar car54)”. Iterated
interpretation has a profound impact on the meaning of Icarus programs. First, it lends
clauses in the language a temporal scope. If the agent is accelerating towards the target on
cycle N and nothing else changes, the interpreter will retrieve the same action on cycle N+1
and continue the acceleration. However, if the target car ever moves in a way that makes
Facing false, Icarus will retrieve the Turn action. This transforms Face into a maintenance
goal for the Accelerate action. The second consequence of top-down iterated interpretation
is that the system can return a relevant action even if the environment undergoes a rapid and
radical change between two successive evaluation cycles. The only limitation is that the new
world situation must be recognized by the plan. Thus, the bumper car agent might
Accelerate, then Turn, GoForward, Turn, Accelerate, and so forth, all in response to a

changing world. This is the core competence of fully reactive languages.
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2.2 Knowledge structures
Icarus contains a small number of key knowledge structures. The first, called a skill,

encodes agent behavior. Skills can represent a situation, an action, a rule, or a process for
accomplishing an objective that is relevant so long as certain conditions apply. Skills are
represented by frames with name and parameter fields followed by several other slots. We
have already seen several examples; CollideWithCar, Face, Near, and Accelerate are all skills
from Table 1.

Skills with the fields :objective, :requires, or :means specify logical structure and conditional
control flow. An :objective slot contains an ordered conjunction of goals, a :means slot
contains a parallel disjunction of methods for accomplishing the objectives, and a :requires
slot contains an ordered conjunction of maintenance conditions for application of the
:means. The :objective slot defaults to False, the :requires to True, and the :means to False.

This guarantees that a slot will be evaluated if the others are not specified.

A skill with the :sequence keyword contains Icarus statements that should be evaluated in
sequence as each succeeds, but not rechecked thereafter. A skill with an :action slot
contains code that alters the physical world. Finally, a skill with a :sensor slot holds
functions that examine the world and bind the results to Icarus variables. We summarize

these structures in Table 2.

Table 2. The four types of Icarus skills.

Keyword Content

:action code that effects the world

:sensor code that senses the world and binds variables
:sequence sequential control flow

:objective

:requires logical structure and control flow

:means

A plan in Icarus is the tree obtained by threading the references to skills that descend from a
top-level call. For example, the invocation “(CollideWithCar car54)” generates a plan
where CollideWithCar points to Face, Near, and Accelerate, while Face points to Turn, and
Near points to Distance and GoForward. In this document, the plan will often be obvious

from context.

Icarus provides one built-in data representation called the short-term memory, which holds

knowledge that must persist across evaluation cycles. The short-term memory contains a
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list of expressions, and is accessed via a unification procedure like that in Prolog. For
example, if short term memory is the list “((car car54) (car54 (10 20) 1:00:04))”, the form
“(car54 ?loc ?time)” binds ?loc to the location (10 20) and ?time to 1:00:04.

2.3 The Icarus Interpreter
The Icarus interpreter has a simple but unusual organization based on a three-valued logic

where every statement in the language evaluates to one of True, False, or an Act. These
values take on special meaning if the clause names a skill (or, recursively, a plan). ‘True’
means the statement was true in the world, ‘False’ means the plan did not apply, and an
‘Act’ return identifies a piece of code for controlling actuators that addresses the objectives
of the plan. We represent a return value of True as a collection of variable bindings that

satisfy the clause, and an Act return as code with instantiated variables.

The interpreter processes the tree of skills in an endless loop, beginning with the top-level
node every cycle. Within each cycle Icarus behaves much like Prolog; it returns all binding
environments that render the plan’s value True, but in addition it generates the resulting
Acts. Icarus can be configured to return all of these Acts, the first Act found, or the single
best Act as determined by a value calculation (not described here). We use the “first act
found” interpretation in this paper. The system can also be configured to selectively
expand the plan by considering a subset of the skills in each :means field. For example, it

can expand the first n, or choose on the basis of a value calculation.

Table 3. Pseudocode for EvaluatePlan.

Function EvaluatePlan (skill, binding environment)
Returns [list of actions, list of binding environments]

Declare temp, result := [list of actions, list of binding environments]

result <— EvaluateConjunction(Objective (skill), binding environment)
If empty(result) Then
Begin
temp <— EvaluateConjunction(Requires(skill), binding environment)
If empty(temp)
Then return False
Else result <— EvaluateDisjunction(Means(plan element), temp)
End

Return [BestAct(result), NewBindings(result, skill)]

Table 3 describes the process of evaluating the objective/requires/means skill. The main

point of this pseudo-code is that Icarus enforces a logical interpretation of skill slots. If the
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objective field produces a non-empty result, the work is essentially done. If the objective
fails, the interpreter will look at the :requires field, and then the :means if evaluation of the
:requires succeeds. The only complexity in this code comes from handling simultaneous
Act and True returns, since these must be accumulated as evaluation progresses. For
example, if the first clause of the :requires field is the match form “(bumper-car ?b)”, any
number of alternate bindings for ?b may result. Two or three might lead to plausible
“Bumplt” Acts. Before returning, EvaluatePlan filters the set of Acts and True returns by
selecting the one best action and isolating any new bindings discovered for input

parameters; this implements a Prolog-like variable passing discipline.

The algorithm for evaluating :sequence states is a bit more arcane, since reactive languages
typically eschew the concept of saved process state; they treat every cycle of the interpreter
as an independent procedure. This gives rise to some unusual problems: in order to track
progress through a sequence we need a definition for the equality of situations presented at
two different interpreter cycles. Similarly, to know when to abort a sequence, we need a
definition of continuity. Our solution maps situation equivalence onto the equality of
binding environments, which lets the interpreter track progress via variable bindings. For
example, if Bumplt(?car) is a three-step sequence, the agent can be in the third step with
respect to the red car and the first step with respect to the blue one. The definition of
continuity is subtler. It is tempting to abort all sequences after a fixed period of time
(measured by interpreter cycles or elapsed time), but the appropriate number would be
context sensitive. It seemed inelegant to define sequences with such a parameter. Instead,
we map continuity onto the constancy of the binding environment. Thus, a sequence will
abort unless the same situation is present every time the sequence skill is called. This lets
the agent begin a sequence, shift its attention to event processed by an entirely different
portion of the plan, and then return to the sequence an arbitrary amount of time later. If the
interpreter receives a binding environment that matches what the sequence last saw, the agent
will pick up exactly where it left off. We discuss an example of the sequence mechanism at
the end of Section 3.

2.4 Icarus primitives
Icarus provides several primitives for composing skills. In particular, the { } syntax allows

access to embedded Lisp functions that encode numeric predicates and sensory tests. For
example, the predicate {Facing ?car} returns True or False after sensing the world. Icarus
also supports an explicit Bind operator and two versions of a three-valued negation; *not*
maps True to False, False to True, and preserves Acts, while *notA* is the same except it

maps Acts to False. The final primitive is a match request that accesses data stored in short-

82



term memory. Icarus treats a clause as a match request if it has no other interpretation. The
Lisp functions update, store, and forget write to short-term memory; sensor skills use them

implicitly to record sensed objects in persistent memory.

2.5 A BNF for Icarus
Table 4 provides a BNF for Icarus programs. We supply it primarily in the interests of

precision, and to remove any lingering ambiguity about Icarus expressions. This BNF
shows that skills are structured objects with names and parameters, and that there are four
different types. The first produces a plan hierarchy, as it support objectives, requires and
means fields. The second also supports hierarchy and implements the Icarus concept of
sequence. The last two implement primitive actions and sensors, which contain calls to Lisp
functions. The BNF also identifies five primitive clause types that can fill any objective,
requires, or means slot. Lisp calls represent escapes to Lisp. The bind function causes
Icaurs variables to take on values. Match-forms match onto short term memory, and the two

forms of negation manipulate return values, as discussed above.

Table 4. A BNF for Icarus programs.

<skill> := (<name> (<parameter>*) <body>)

<body>:= [:0objective (<clause>*)] [:requires (<clause>*)] [:means (<clause>*)]
| :sequence (<clause>*)
| :action (<Lisp-call>*)
| :sensor (<Lisp-call>*)

<clause> := <Lisp-call> | (bind <var> <Lisp-call>) | <match-form>
| (*not* <clause>) | (*notA* <clause>) | <skill>

<Lisp-call> := {<Lisp-form>}

<match-form> := <Lisp-form>

<var> = ?<symbol>

Now that we have described the syntax and semantics of the Icarus language, we are in a
position to discuss its implications for expressing agent behavior. In particular, we will
make a number of claims to the effect that Icarus increases the scope of fully reactive
programs by supplying novel programming abstractions. We explore these claims by

example in the next section.

3 The benefits of Icarus

We maintain that Icarus is a facile and expressive programming language, which will
support a new class of agents that are fully reactive but can also deliberate. This type of
claim is somewhat difficult to support since it calls for a fundamentally aesthetic evaluation.

In response, we will at least phrase our claims succinctly, provide numerous examples, and
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give a basis for comparison with other languages. In particular, we describe the benefits of

Icarus in the context of its two nearest neighbors: universal plans and teleoreactive trees.
Claim 1: Icarus is at least as expressive as teleoreactive trees and universal plans.

Although we will show that Icarus has many novel features, we begin by demonstrating it
preserves existing representational capabilities. We do this by defining exact translation

rules between its representations and those used in other languages.

We begin with teleoreactive trees, which are ordered lists of situation-action rules,
interpreted via a top-down, iterated loop that selects the first matching rule. They are
constructed such that the leading predicates are produced (if possible) by actions deeper in
the tree, although there is no explicit goal-action pairing. Table 5 contains a teleoreactive tree
for the Bumper Car problem seen above. It has a natural English translation: if the agent is
already in contact with the car, return True, else if Facing and Near are true, return the
Bumplt action, and so forth (through the nested if). As in Icarus, these conditions can

change from one time step to the next without effecting the validity of the plan.

The right half of Table 5 illustrates the Icarus representation for the same control flow. We

can map teleoreactive trees into Icarus plans by employing two transformations:

(1) Create an Icarus skill for each rule in the teleoreactive tree and place the trees’
predicates in the Icarus :requires clause.
(2) Construct a single Icarus skill that lists the transformed rules as negated :requires

clauses.

The Icarus representation employs the three-valued negation construct, *not*, to preserve
Act returns but transform rule failure into True to enable the appropriate control flow. In
English, “if the first rule does not hold, try the second, then the third, etc.”. By
construction, Icarus returns the Act associated with the first relevant rule. Teleoreactive trees
also allow ordered disjunctions of subtrees; Icarus captures this control flow via a nested

use of the same transformation.
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Table 5. A teleoreactive tree and the corresponding Icarus plan.

Teleoreactive Tree Icarus plan

InContactWith(car) — T (CollideWithCar (?car)

Facing(car) A Near(car) — Bumplt :requires
Facing(car) — GoForward ((*not* (TrueWhenInContact ?car))
T — Turn (*not* (BumpItWhenNearAndFacing ?car))

(*not* (GoForwardWhenFacing ?car))
(*not* (TurnWhenTrue)))

(BumpltWhenNearAndFacing (?car)
:requires ({Near ?car} {Facing ?car})
:means ((Bumplt)))

The correspondence between an Icarus plan and Universal Plan is similarly easy to state, as
shown in Figure 2. The left-hand side of this diagram provides a graphical representation
of a Universal Plan, where the arcs are predicates (interpreted as goals above a node and
preconditions when below it), the jagged lines identify actions, and the “<” symbol
indicates an ordered conjunction of the outgoing arcs. The Universal Plan interpreter
iteratively processes this structure in a top-down left-to-right fashion using the rule: if
Not(goal) and Precondition then return Action. This leads to the English translation, “if the
agent is InContactWith the car then return True, else if Facing and Near hold, return the
Bumplt action in order to make InContactWith true”. Note that universal plans make the
relation between actions and goals explicit. We can translate a Universal Plan into an Icarus

plan with three transfomations:

(1) Define an Icarus skill for every node in the universal plan diagram.
(2) Place the goal of that node in the :objective field and the action in the :means field.
(3) Map every precondition onto a recursively defined skill and place its name in the

:requires field; a True precondition corresponds to an empty :requires field.

We note that universal plans support parallel preconditions, which are not yet implemented
within Icarus. However, our plans to incorporate them only require localized changes to the
interpreter, specifically to represent parallel return values and execute multiple actions.
Icarus already has the ability to evaluate multiple means fields in the same pseudo-parallel

fashion found in universal plans.
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In summary, universal plans and teleoreactive trees map easily and directly into Icarus plans.
This not surprising, since all three representations are based on predicate logic and were all
designed for reactive control. The remainder of this section highlights their differences,

some of which are profound.

Universal plan Icarus plan

(CollideWith (?car)
. :objective ({InContactWith ?car})
InContactWith? :requires ((Face ?car) (At ?car))

Bumplt ﬁ /N :means  ((Bumplt ?car))

facing?

Turn <€~

(Face (?car)
\/ Go Forward :objective ({Facing ?car})
:means  ((Turn)))

(At (?car)
:objective ({Near ?car})
:means  ((GoForward)))

Figure 2. A universal plan and its Icarus equivalent.

Claim 2: Icarus can encode fully reactive plans that employ novel abstraction principles.

Like all programming languages, reactive systems support abstraction methods. Universal
plans and teleoreactive trees allow recursion down precondition links, though actions must
be primitive. Icarus provides additional methods; it supports abstract objectives and means,
in addition to abstract requirements, because it lets each of these fields contain subplans.

This increases the overall flexibility of Icarus programs.

Table 6 illustrates the concept of an abstract action by transforming the Bumplt primitive of
Figure 2 into a hierarchical plan. This subplan has some complexity; it lets the agent Ram
enemies and Tap friends, and it includes a further reactive subplan for acquiring electrical
power. The key feature, however, is that Bumplt is a means for causing a collision in Figure
2, but a plan for doing so in Table 6. Thus, Icarus supports abstract actions. Note that
universal plans and teleoreactive trees lack this mechanism. The nearest Universal Plan to

the Bumplt skill in Table 6 would read, in Icarus, as:

(Bumplt (?car)
:objective ((InContactWith ?car))

:requires ((HavePower)(Driver ?car ?person) (Enemy ?person))
:means ((SetPedal 100)))
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This encoding associates the most specific action with the most global objective, and

therefor elevates details in an awkward way.

Table 6. An Icarus action defined by a subplan.

(Bumplt (?car) (Ram (?car)
:objective ((InContactWith ?car)) :requires ((Driver ?car ?person){Enemy ?person})
:requires ((HavePower)) :means ((SetPedal 100)))

:means  ((Ram ?car) (Tap ?car)))
(Tap (?car)
(HavePower (?car) :requires ((Driver ?car ?person){Friend ?person})
:objective ({Power ?car ON}) :means ((SetPedal 20))
:means  ((HitPowerPole ?car)

Table 7 illustrates an abstract objective encountered in the expansion of the Near predicate
from Figure 2. Here, we focus on KnowLocation (a knowledge goal), which we view as an
ordered sibling to the goal of computing distance. The plan for KnowLocation asks if
short-term memory contains a recent record of the target car, and returns its location if true.
Otherwise, it calls on LookForCar, which either observes the car (CarsInView is a sensor
skill) or invokes a physical search procedure. Even though this search might involve
significant effort, Near treats KnowLocation as an abstract objective.'

" In universal plans, primitive predicates lacking a truth value implicitly expand into knowledge acquisition

plans. In contrast, Icarus lets any clause in the :objective field contain a subplan.
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Table 7. An Icarus subplan for an abstract objective.

(Near (?car 7d) (LookForCar (?car ?oc)
:objective ((KnowLocation ?car ?loc) :objective ((CarsInView 7c)
(Distance-to ?loc 7d) {member ?car ?c}
{< ?d *OneCarLength*}) (Location ?car ?loc))

:means ((Turn))
(KnowLocation (?car ?loc)
:objective ((?car ?loc ?time)
{recent ?time})
:means  ((LookForCar ?car ?loc))

In summary, Icarus can express hierarchical, reactive plans for actions and objectives that
are not possible in universal plans and teleoreactive trees. This provides the programmer

with a powerful vocabulary for expressing behavior and for engaging in hierarchical design.
Claim 3: Icarus can encode fully reactive plans with novel cognitive elements.

Although universal plans and teleoreactive trees provide logically structured maps from
situation to action, neither system provides primitives for reasoning about the world during
action selection. That work is relegated to the Prolog or Lisp implementations of primitive
predicates and actions. This makes it awkward to design agents that need to deliberate to
some degree to select a reaction. Icarus incorporates general-purpose applicative

programming constructs to address this problem.

Table 8 contains an example of this interstitial cogitation. The code implements an abstract
action that identifies and moves behind the fastest bumper car in a crowded arena. This
behavior requires a relatively simple calculation to sort three cars by speed, although the
domain problem (and the requirement on Icarus) can obviously generalize. Icarus supports
this computation via a logic-programming metaphor using function calls and Prolog-like

parameter passing. The Icarus language is general enough to support recursive programs.
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Table 8. Calculation and recursion within Icarus.

(MoveToFastestLane () (Fastest (?c1 ?s1 7¢2 7s2 ?Car ?Speed)
:requires :objective ({>= 7s1 7s2}
((CarAheadLeft ?carl 7speedl) (bind ?Car 7cl)
(CarAheadCenter ?car2 ?speed2) (bind ?Speed ?s1))
(CarAheadRight ?car3 7speed3) :means

((fastest ?2c2 ?s2 ?c1 ?s1 ?Car 7Speed)))
;;bubble sort the three cars by speed
(Fastest ?carl ?speed1 ?car2 ?speed2 ?c 7s)
(Fastest 7c 7s ?car3 ?speed3 ?fastest-car))
:means ((MoveBehind ?fastest-car)))

Note that Icarus does not support the full generality of Prolog since literals can match
against the contents of short-term memory but not against program memory. Moreover, all
function calls must be explicit. We adopted this limitation to help ensure a fast reactive

cycle, since it transforms hierarchical plan interpretation into a simple tree walk.
Claim 4: Icarus can encode plans with processes as goals.

One of the most unusual features of Icarus is that it treats situations and processes in a
fundamentally symmetric way. In a mechanical sense, this property arises from the fact that
any clause in an :objective, :requires, or :means slot can be a predicate that represents a
situation or a skill that represents a process (a situation in which a particular action may be

repetitively applied). This duality lets us define behaviors with processes as objectives.

Table 9 contains an example. The left-hand side of this table gives the top-level plan for
Bumper Cars with processes as objectives. It says, “the goal of Bumper Cars is to cause
collisions, and to drive both recklessly and impolitely. If none of these behaviors are
accessible, then drive laps until they are.” This encoding makes intuitive sense for this
domain, since riding bumper cars is all about engaging in an activity. Contrast this with the
situation-oriented version of the plan on the right-hand side of the table, which is the
equivalent of the closest corresponding Universal Plan or teleoreactive tree. This code is in
some sense forced to conjure up a metric for spills and thrills to give a focus for behavior.
It also has an unwanted side effect; the agent will stop playing the game once the target thrill

count is achieved.
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Table 9. Process and situation oriented versions of a plan.

(RideTheBumperCars () (GenerateSpills ()

:objective ((CollideWithSomeCar) :objective ((?spill-count ?sc){> ?sc 10})
(DriveRecklessly) :means ((CollideWithSomeCar)))
(Drivelmpolitely))

:means ((DriveLaps))) (GenerateThrills ()

:objective ((?thrill-count ?tc){> ?tc 10})
:means ((DriveRecklessly)))

The BumperCar example also raises a more general point that domain problems can have
state-like or process-like nature. State-like problems focus on achievement or maintenance
goals, while process-like problems emphasize agent actions over their consequences. We
submit that the technology of planning and reactive programming is entirely too biased
towards state-like approaches, to the detriment of process-like models. As a result, systems
like Icarus which deliberately blur the state/process boundary may deserve some special
attention (Drabble, 1988; Earl & Firby, 1997).

Claim 5: Icarus can encode behavior composed of sequential reactive contexts.

Although languages based on an iterated action map support extremely reactive behavior,
they have a down side; they require the programmer to write a fully reactive plan that can
respond to any event at any time. This is clearly not true of the world; some events occur in
sequence because they are constrained by the laws of physics, while others occur in
sequence because the agent is the root cause. Icarus addresses this issue by supplying a

sequence construct in addition to its reactive ones.

Table 10 gives an example that compares a sequential and fully reactive encoding of a plan
for playing BumperCars. The right-hand side shows a reactive plan of the kind expressible
with universal plans or teleoreactive trees; it states that the objective of PlayBumperCars is
to Leave the arena but arranges for leaving to require the precondition “Ride”.  This
pattern repeats, connecting the action plans in a seemingly causal way. This structure can
produce the behaviors Pay, Ride, and Leave in sequence, but it also lets the agent Pay,
discover the ride is magically over, and then Leave. Alternatively it might Pay, then be
teleported outside the arena making PlayBumperCars evaluate to “already true”. This
unwanted generality comes at a price, since the interpreter must ask all the relevant context-
setting questions on every decision cycle. This interaction with the frame problem is

destined to be extremely inefficient as plan complexity grows.
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In contrast, Icarus also supports the more constrained, sequential version of
PlayBumperCars. Here, the programmer simply lists the behaviors that must occur in
sequence, while the interpreter internally tracks process state. Note that Pay, Ride, and
Leave can be reactive plans in their own right, which return True when done. The parameter
?day, which identifies the particular instance of the sequence, is used by the interpreter to
index the appropriate process state and to delete saved state when a sequence is interrupted,

as we described Section 2.3.

Table 10. Sequential and reactive versions of PlayBumperCars.

(PlayBumperCars (?day) (PlayBumperCars () :objective ((Leave)))
:sequence ((Pay)
(Ride) (Leave () :requires ((Ride))
(Leave))) :means (<plan for leaving>))

(Ride () :requires ((Pay))
:means (<plan for riding>))

In summary, Icarus’ sequence construct increases the expressivity and simplicity of fully
reactive languages in a novel way. Specifically, it lets programmers define reactions to a

sequence of events in the external world, and it lets the interpreter avoid redundant testing.

4 Related work

We have already attempted to characterize Icarus' position in the space of architectures for
controlling physical agents, but given the recent activity in this area, a few more words seem
in order. The classical approach to agent control exemplified by STRIPS (Fikes & Nilsson,
1971) used deliberative planning methods followed by open-loop execution, which clearly
encounters problems in dynamic environments. Early responses to these problems (Agre,
1988; Brooks, 1986; Schoppers, 1987) relied on purely reactive methods that operated
entirely in closed-loop fashion. But, clearly, both paradigms contain valuable characteristics

that would benefit an intelligent agent.
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The Icarus architecture, which augments a reactive core with limited deliberative and
sequence-handling abilities, aims for the best of both worlds.> However, other recent
research on agent languages with similar motivations has produced somewhat different
results. Work by Reddy and Tadepalli (1997) on reactive hierarchical task networks comes
closest to our own, in that it represents control knowledge in hierarchical structures and uses
explicit requirements to determine when it can execute a plan. One key difference is that
this approach assumes sequential execution within each plan, whereas Icarus assumes
reactive control. The RAMA system (Earl & Firby, 1997) also encodes control knowledge
as process-oriented plans, but again assumes that plans, once initiated, run to completion

rather than operating in reactive mode, as in Icarus.

Many recent architectures for robotic agents have a number of distinct levels that rely on
different representations and control paradigms. One example comes from Simmons et al.
(1997), who describe a robotic architecture for office-delivery tasks. Their Xavier system
uses a means-ends planner to select tasks, a forward-chaining heuristic search to find paths,
a Markov decision process for navigation, and constrained optimization for avoiding
obstacles. Yamauchi et al. (1998) report another multi-level architecture, Magellan, that uses
heuristic search for path planning and a reactive controller for obstacle avoidance. In
contrast, Icarus represents all control knowledge in the same formalism, from high-level

activities like go for a drive to low-level ones like step on the brake.

Another approach to combining deliberation with reactivity invokes learning to transform
the former into the latter. For instance, the Soar architecture (Laird & Rosenbloom, 1990)
supports deliberative methods like means-ends analysis, but also includes a chunking
process that caches generalized results from deliberation into more efficient stimulus-
response rules. When they applied this framework to the task of controlling a robot arm,
Soar learned control rules that let it manipulate blocks in a reactive manner. Similarly,
Benson (1995) describes an extension of Nilsson's framework that learns durative operators
from experience, then uses deliberative planning with these operators to generate
teleoreactive trees for the task of controlling a simulated aircraft. Icarus, at least in its current
incarnation, assumes that its reactive knowledge is provided by a programmer rather than

learned from experience.

? An earlier version of Icarus (Langley, 1997) supported a similar reactive formalism that merged states and
process, but did not support hierarchical skills, extended calculation, or the notion of reactive logic

programming.
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Before closing, we should expand on the distinction introduced earlier between architectures
and languages for physical intelligent agents. Briefly, an architecture specifies a set of
memories and processes that one can use to implement an agent, along with communication
channels among them, whereas a language indicates a specific syntax and semantics for
instantiating these memories and processes. Much work on reactive controllers (Brooks,
1986; Hayes-Roth, 1991) focuses on architectural issues but places no constraints on the
language used to implement behaviors. SCHEMER (Fehling, personal communication,
1996) has a similar flavor. Some research on multi-level architectures for robot control take
an analogous position, although COLBERT (Konolige, 1997) is instead a robotic language
with few architectural constraints. In contrast, Icarus constitutes an architecture and a
language, making it more akin to frameworks like Soar and ACT (Anderson, 1983), which

also address both issues.

5 Concluding remarks

This paper has introduced Icarus, a tool for constructing artificial agents that perform tasks
involving significant cognitive effort in extremely dynamic environments. We
demonstrated, by example, that the language has novel expressive properties which
generalize existing reactive languages. In particular, Icarus can encode abstract actions and
hierarchical objectives, it supports a logic-programming metaphor, it can represent both
state-like and process-like plans, and it can express sequential behavior. These features

hold promise to make Icarus a language of choice for building reactive plans.

We have tested Icarus’ ability to express agent behavior by constructing disparate
applications: pole balancing (with process objectives), a reactive version of the Tower of
Hanoi, a control program for a simulated cleaning robot, and a watering system for the
author’s garden that grows competitive pumpkins for size. We are currently building our
largest system; an agent that controls a vehicle in an extensive traffic simulation. Our
experience with each of these projects has reinforced our belief that Icarus is a powerful and

convenient language for specifying reactive behavior.

We are also extending Icarus in several directions. First, we are taking advantage of the
interpreter’s simplicity to transform Icarus from a behavior generator into a plan recognizer.
In particular, we hope to interpret traces of human driving behavior as instances of
contingent plans. A second extension builds on Icarus’ ability to represent abstract plans;
we have attached value estimates to skills at multiple levels in the plan hierarchy, and are
developing algorithms for hierarchical credit assignment and convergent value learning. A

third effort examines the impact on system performance when we use these estimates to
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prune exploration of the Icarus plan tree. This work is aimed at giving Icarus a decision-

theoretic semantics that will enhance its ability to model deliberate thought.
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