
Controlling Gaming Agents via Reactive Programs

Daniel Shapiro
(dgs@leland.stanford.edu)

Engineering Economic Systems
& Operations Research Department

Stanford University, Stanford CA 94305

Abstract

This paper introduces Icarus, a language for specifying
the behavior of artificial agents that require extremely
reactive, yet goal-focused control programs which
include non-trivial cognitive elements. The key features
of Icarus are the ability to express hierarchical
objectives, actions, and plans, the use of function call
semantics, and the ability to express processes as
objectives, all embedded in a reactive control loop than
considers every relevant action on every cycle of the
interpreter. Icarus has a small footprint and executes fast.
We use a body of examples to illustrate these features, and
establish Icarus’ relevance to the problem of encoding
purposive, but reactive artificial agents for computer
games.

Reactivity Meets Computer Games

Every artificial agent operating in a physical domain shares
the need to integrate sensing and acting in service of
objectives. However, since real and simulated
environments are rarely predictable (or even cooperative),
agent programmers face a difficult problem; they need to
merge goal-driven behavior with situation-relevant
response. This is a key issue in applications as diverse as
planetary rovers which have to collect rocks while avoiding
dust storms, and computer games where synthetic
characters have to pursue their own agendas while
responding to player actions and interference.

Several technologies from Artificial Intelligence address
this problem. Interleaved plan-execution systems generate
plans from goals and action descriptors, then replan in
response to observations (Haigh and Veloso 1996).
Reactive execution systems employ structured situation-
action maps to represent highly contingent behavior (Agre
1988, Brooks 1986, Firby 1989). Universal plans
(Schoppers 1987) and teleoreactive trees (Nilsson 1994) use
predicate logic representations and are perhaps the best
known. Layered architectures merge goal and situation
driven response by segregating functionality, e.g., into
layers for mission planning, behavior selection, and
mobility control, or scheduling, path selection, and
navigation (Simmons et al. 1997). One can also invoke
learning to transform goal oriented deliberation into
situation-action rules (Laird and Rosenbloom 1990).

While all of these AI technologies are relevant to agent
design for computer games, the gaming context imposes

special constraints. In particular, any tool suite must be
scaleable, “fungible”, and efficient. Scaleable techniques
support the creation of many agents, and agents of
increased complexity which strategize in addition to react.
Fungible techniques (to borrow an economic term) make it
easy to specialize agent behavior and add the nuances which
are in some sense the saleable product of computer games.
(This is generally accomplished via hands-on procedural
programming.) The need for efficiency is a given; useful
agent design tools must have low overhead measured in
both size and speed, even for exploratory games which
require second vs fractional second response.

AI techniques and gaming constraints mismatch to a
significant degree. Replanning systems require plan
generators that seldom provide sub-second turn-around.
Reactive techniques may not scale well as the space of
contingencies grows unless they have access to planning
engines or more general data and control flow constructs.
However, designs with such structures have large
footprints, e.g., PRS (Georgeff, Lansky, and Bessiere
1985). Reactive approaches also tend to be non-fungible
because they lack rich methods of expressing plan hierarchy
which can be used to encode behavioral nuances. Layered
architectures are clearly large-footprint items, as are
learning technologies which begin with compute intensive
representations of behavior. What is missing is a time and
memory efficient agent design tool that supports reactivity,
cognitive (or strategic) calculation, and a convenient means
of specializing behavior.

Icarus by Example

Icarus is a language for specifying the behavior of agents
that perform cognitively rich, reactive tasks in highly
dynamic environments. Icarus provides several novel
features which make it a powerful programming tool. In
particular, it unites a broad vocabulary for expressing
abstract plans with a procedural framework based on
Prolog-like semantics under a fully reactive control loop.
This section illustrates Icarus via example. We discuss the
full syntax and semantics of Icarus and relate it to prior art
in (Shapiro and Langley 1998).

Table 1 contains a simple Icarus program for controlling
a bumper car at an amusement park. The code expresses a
goal-directed plan for producing a collision with a car
identified by an input parameter. The top level plan
element contains three parts: an objective, a set of
requirements (or preconditions) and a means field which
identifies a method of producing the goal. In English, this

program reads, “In order to be in contact with the car,
accelerate hard when you are both facing and near it”. The
Icarus interpreter mirrors these steps, but in a more reactive
way. It begins by asking if the objective is already true
(InContactWithCar is a sensory test); if so, the plan
terminates with success. If the objective is false, the
interpreter evaluates the statements in the :requires field in
order, and if they are all true (after recursive descent to
examine the code for Face and Near), the system evaluates
the :means clause which contains the primitive action,
BumpIt. The interpreter returns BumpIt to an external
execution system that applies the code in its action clause
within the physical world.

Table 1: An Icarus program for driving a bumper car.

 (CollideWithCar (?car)
 :objective ((InContactWith ?car))
 :requires ((Face ?car) (Near ?car))
 :means ((BumpIt ?car)))

(Face (?car)
 :objective ((Facing ?car))
 :means ((Turn)))

(Near (?car)
 :objective ((Distance ?car ?d)
 {< ?d 10})
 :means ((GoForward)))

(BumpIt (?car) :action ({SetPedal 100}))

Like other reactive languages, Icarus applies this evaluation
process in an infinite loop, starting at the top node of the
plan every execution cycle. (The top node is the one
referenced when invoking the interpreter, as in
“(CollideWithCar car54)”). Iterated interpretation has a
profound impact on the meaning of Icarus programs. First,
it lends clauses in the language a temporal scope. If the
agent retrieves {SetPedal 100} on cycle N and nothing else
changes, the interpreter will select the same action on cycle
N+1 and continue the acceleration. However, if the target
car ever moves in a way that makes Facing false, Icarus
will retrieve the Turn action. This transforms Face into a
maintenance goal for the BumpIt action. The second
consequence of top-down iterated interpretation is that the
system can return a relevant action even if the environment
undergoes a rapid and radical change between two
successive evaluation cycles. The only limitation is that
the new world situation must be recognized by the plan.
Thus, the bumper car agent might BumpIt, then Turn,
GoForward, Turn, BumpIt, and so forth, all in response to
a changing world. This is the core competence of fully
reactive languages.

Icarus’ interpreter has a simple but unusual organization
based on a three valued logic, where every statement in the
language evaluates to one of True, False, or an Act. An
Act is a body of code with instantiated variables meant to
effect the world. True, represented by a collection of

variable bindings, means the clause is true under those
bindings. These values take on special meaning if the
clause names a plan element (or recursively, a plan): an Act
return means “take this action to pursue the plan’s
purpose”, True means “the purpose has already been
accomplished in the world”, and False means the plan does
not apply. Icarus processes the tree of plan elements in an
endless loop, beginning with the top level node every
cycle. Within each cycle Icarus behaves much like Prolog;
it returns all of the binding environments which render the
plan’s value True, but in addition it generates all of the
resulting Acts. Icarus can be configured to return all of
these Acts, the first Act found, or the single best Act as
determined by a value calculation (not described here). We
use the “first act found” interpretation in this paper.

Novel Icarus Features

Like all programming languages, reactive systems support
abstraction methods. Icarus provides a particularly rich set
by allowing each of the objective, requirement, and means
fields to contain whole sublans (for comparison, universal
plans support recursion down precondition links but its
actions are primitive). This increases the flexibility of
Icarus programs.

Table 2 illustrates the concept of an abstract action by
transforming the BumpIt primitive of Table 1 into a
hierarchical plan. This subplan has some complexity; it
lets the agent Ram enemies and Tap friends, and it includes
a further reactive subplan for acquiring electrical power.
The key point, however, is that BumpIt is a means for
causing a collision in Table 1, but a plan for doing so in
Table 2. Thus, Icarus supports abstract actions.

Table 2: An Icarus action defined by a subplan.

(BumpIt (?car)
 :objective ((InContactWith ?car))
 :requires ((HavePower))
 :means ((Ram ?car) (Tap ?car)))

(HavePower (?car)
 :objective ((Power ?car ON))
 :means ((HitPowerPole ?car)))

 (Ram (?car)
 :requires ((Driver ?car ?person)(Enemy ?person))
 :means ((Accelerate 100)))

(Tap (?car)
 :requires ((Driver ?car ?person)(Friend ?person))
 :means ((Accelerate 20)))

(Accelerate (?n) :action ({SetPedal ?n}))

Icarus also supports abstract objectives, as shown in Table
3 which expands the Near predicate of Table 1. Here, we
focus on KnowLocation (a knowledge goal) viewed as an
ordered sibling goal of computing distance. The plan for

KnowLocation asks if short term memory contains a recent
record of the target car, and returns its location if true.
Otherwise, it calls on LookForCar (not shown) which
might observe the car or invoke a physical search
procedure. In either case KnowLocation is an abstract
objective from the perspective of Near.

Table 3: A subplan for an abstract objective.

(Near (?car ?d)
 :objective ((KnowLocation ?car ?loc)
 (Distance-to ?loc ?d)
 {< ?d 20}))

 (KnowLocation (?car ?loc)
 :objective ((?car ?loc ?time)
 (recent ?time))
 :means ((LookForCar ?car ?loc)))

Another novel aspect of Icarus is that it provides primitives
for reasoning about the world during action selection.
(Other fully reactive designs relegate that task to primitive
predicates and actions coded in an external language.) Table
4 contains an example from an abstract action for moving
behind the fastest bumper car in a crowded arena. This
behavior requires a relatively simple calculation to sort
three cars by speed, although the domain problem (and the
requirement on Icarus) can obviously generalize. Icarus
supports this computation via a logic programming
metaphor using function calls and Prolog-like parameter
passing. Icarus is general enough to support recursive
programs.

Table 4: Calculation and recursion within Icarus.

(MoveToFastestLane ()
 :requires
 ((CarAheadLeft ?car1 ?speed1)
 (CarAheadCenter ?car2 ?speed2)
 (CarAheadRight ?car3 ?speed3)
 (Fastest ?car1 ?speed1 ?car2 ?speed2 ?c ?s)
 (Fastest ?c ?s ?car3 ?speed3 ?fastest-car))
 :means ((MoveBehind ?fastest-car)))

 (Fastest (?c1 ?s1 ?c2 ?s2 ?c ?s)
 :objective ({>= ?s1 ?s2}
 (bind ?c ?c1)
 (bind ?s ?s1))
 :means
 ((Fastest ?c2 ?s2 ?c1 ?s1 ?c ?s)))

Icarus’ most unusual feature is that it treats situations and
processes in a fundamentally symmetric way. Consider the
top-level game plan called RideTheBumberCars in Table 5,
which casts processes as objectives. It says, “the goal of
Bumper Cars is to cause collisions, and to drive both
recklessly and impolitely. If these behaviors aren’t
accessible, drive laps until they are.” This encoding makes
intuitive sense since riding bumper cars is all about
engaging in an activity. Contrast this with the situation-

oriented version of the plan presented in the remainder of
Table 5 which is essentially forced to conjure up a metric
for spills and thrills to focus agent behavior. This
approach also has an unwanted side-effect; the agent will
stop playing the game once the target thrill count is
achieved.

Table 5: Process and situation oriented versions of a plan.

(RideTheBumperCars ()
 :objective ((CollideWithSomeCar)
 (DriveRecklessly)
 (DriveImpolitely))
 :means ((DriveLaps)))

 (GenerateSpills ()
 :objective ((?spill-count ?sc) {> ?sc 10})
 :means ((CollideWithSomeCar)))

(GenerateThrills ()
 :objective ((?thrill-count ?tc) {> ?tc 10})
 :means ((DriveRecklessly)))

These BumperCar examples raise a more general point that
domain problems can have state-like or process-like nature.
State-like problems focus on achievement or maintenance
goals, while process-like problems emphasize agent actions
over their consequences. We submit that the problem of
encoding artificial agents for computer games is more
process than state-like in nature, since the behavior of the
game agent vs. its goal is paramount.

Concluding Remarks

This paper has introduced Icarus, a tool for constructing
artificial agents that pursue cognitively rich tasks in
extremely dynamic environments. Icarus provides a rich
vocabulary for representing plans that should address
currently unmet needs of computer gaming: the hierarchical
nature of Icarus plans provides scaleability, while the
function call semantics gives Icarus plans a familiar
procedural flavor. These two features support the ability to
encode nuanced behavior (contrast this with a coding model
that employs a flat list of production rules). Finally,
Icarus’ footprint is quite small; Icarus programs quasi-
compile into fixed tree structures, and the interpreter which
walks that tree only occupies a few pages of code.
Concerning speed, a non-trivial program for controlling a
simulated robot executes ~30 times per second on 200
MHz hardware running Icarus in Lisp under Unix
(implemented with only a modicum of attention to
efficiency). This number includes simulation, display, and
inter-process communication delays. A second
implementation will improve this picture.

Icarus is, however, a research prototype that has only
been tested in a limited number of domains. These include
toy problems (pole balancing with process objectives, a
reactive version of the Tower of Hanoi) and non-trivial
control programs such as a simulated cleaning robot, and a

watering system for the author’s garden that grows
competitive pumpkins for size. We are currently building
our largest application; an agent that controls a vehicle in
an extensive traffic simulation. Each of these projects has
reinforced our belief that Icarus is a powerful and
convenient behavior specification language.

Icarus has the potential to address other key problems in
game design. One of our current efforts transforms Icarus
from a behavior generator into a recognizer for highly
contingent user plans. As a result, Icarus could provide a
method of analyzing player intent and increasing the
sophistication of automated adversaries. More boldly, we
can generalize the notion of an Icarus agent into a game-
conductor whose “sensors” detect game events, “actuators”
introduce characters, puzzles, or widgets, and whose
objective is to orchestrate the story-line towards some
conclusion. Icarus’ ability to represent a process as an
objective provides language level support for this task; the
developer can express the game-conductor in terms of
actions that enable whole scenarios, and subplots that
compose story lines. Icarus may be unique in this regard.

Acknowledgements

We thank Pat Langley, Ross Shachter, and Derek Ayers for
their assistance in clarifying this work, and Marcel
Schoppers for many discussions of reactive execution.

References

Agre, P. 1988: The Dynamic Structure of Everyday Life,
Technical Report, AI-TR-1085, MIT Artificial Intelligence
Laboratory.

Brooks, R. 1986. A Robust Layered Control System for
a Mobile Robot. IEEE Journal of Robotics and
Automation, 2:1.

Firby, J. 1989. Adaptive Execution in Complex
Dynamic Worlds, PhD. diss., Dept. of Computer Science,
Yale University.

Georgeff, M., Lansky, A., and Bessiere, P. 1985. A
Procedural Logic. In Proc. 9th IJCAI, pp 516ff.

Haigh, K., and Veloso, M. 1996. Interleaving planning
and robot execution for asynchronous user requests. In
Proceedings of the International Conference on Intelligent
Robots and Systems, 148-155.

Laird, J., and Rosenbloom, P. 1990. Integrating
execution, planning, and learning in Soar for external
environments. In Proceedings of the Eighth National
Conference on Artificial Intelligence, 1022-1029.

Nilsson, N. 1994. Teleoreactive programs for agent
control. Journal of Artificial Intelligence Research 1:139-
158.

Schoppers, M. 1987. Universal Plans for reactive robots
in unpredictable environments. In Proc. 10th IJCAI, 1039-
1046.

Shapiro, D., and Langley, P. 1999. Controlling physical
agents through reactive logic programming. Third

International Conference on Autonomous Agents. To
appear.

Simmons, R., Goodwin, R., Haigh, K., Koenig, S., and
O’Sullivan, J. 1997. A layered architecture for office
delivery robots. In Proceedings First International
Conference on Autonomous Agents, 245-252.

