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Modelling How and When Learning Happens in a
Diagrammatic Reasoning Task
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Diagrams, Interfaces, and Klingons
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Device Schematic

� Based on Kieras & Bovair's Starship+ (='Klingon’)

interface
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Task Details

� Subjects are given:
(i) a general intro. to the problem
(ii) basic information on the interface
(iii) a diagram of the underlying circuit

� Subjects are told that ONE component in the
circuit is faulty, and are asked to indicate which
o n e
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Some Example Faults
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Why pay attention?

�How to learn with in terac t ion
� Illustrates human-level learn ing
➤Forbus gold stand a r d ,

➤Langley notes “just on this task”

� Shows that Soar chunker models
learning and transfer of learning

� Shows learning and/with reasoning
� There is no wireless network
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Diag-Soar (v16 )
����(Ritt er & Bibby, 2 0 01 )

� 173 rules + 220 chunks (new rules)

� Schematic knowledge represented a s
linked lists, organized as 'routes' through
the circuit

� Visual interface information represen ted
as declarative structures for lights &
switches

� Status of interface diagram represented in
top goal, accessed by a t t end



int erf .-
select

INTERF.
CHOICE

f ind-
fault

CHOOSE-COMPONENT

TEST-COMPONENT

select
comp

DIAG-
SUGGESTION

INTERFACE-
SUGESTION

(SOLVE-PROBLEM)

  (TEST-COMPONENT)

(DIAG-SUGG.) (CHECK-LIT)
(CHECK-SWITCH)
(CHECK-PREVIOUS)

SOLVE-PROBLEM

COMPREHEND

REPORT

( INTERFACE

-SUGG.)

CHOOSE-SWITCH

DIAG-CHOICE

diag.-select

CHECK-SWITCH-DIAG

CHECK-PREVIOUS-DIAG

t est -
comp

CHECK-LIT

DECIDE-STATUS

ATTEND

(COMPREHEND)

(CHOOSE-
COMPONENT)

diagnose

(DECIDE-
STATUS)

check-world

CHECK-SWITCH-DECIDE

CHECK-PREVIOUS-DECIDE

RESET

CHOOSE-PREVIOUS

REALITY-CHECK

Diag-Soar’s Problem Spaces
���� Rit ter, 2 0 01. Soar
ICCM tutorials
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Diag-Soar (cont. )

� Organization of components on the
interface diagram 'sequences' the checking
of each component

� If a subgoal requires perceptual
information, goal stack must be re-built

� a t t end and comprehend  operators used to
represent the perceptual components o f
the task
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Representation?

� Experience and knowledge stored in
Soar production rules

�Rules organized as implement ing
problem spaces, operators, and
choices between them

�All learned knowledge is also
represented in rules with
these structures
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Op No 
Change

Count problem space

Soar, Learning in Action

Add 1+2

Result=3
New rule:
  If op is add 1+2
  then result = 3



� Tor et al. 2004 CaDaDis, BRIMS
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What is Learned?

� (All learning implemented as new rules)

� Where to look - implementation of
Choose-component; and creation of
Attend and additions to Attend

� What stimuli mean - implementation o f
Comprehend (and lower operat ions)

� Augmentat ions to the state from
previous problem solving

� Huge amounts of transfer
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General Results

�Does the task

�General Strategy — sequential
components checking — emerges
from the interface representation ,
consistent with Ss protocols

� Final ('fully chunked') behaviour
reflects this strategy, behaving as if it
were simply a recognition (immediate
response) task
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Average RTs by Subjects
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The data

� 10 subjects solved
� 20 problems
� Each subject saw a different series of

problems
� Problems sampled with replacement

(nominally)
�RTs and answers recorded
� Incorrect trials discarded
� Some comments taken at end of trials
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RTs by Fault Type

�  Accounts for 90% of Ss' RT
variability
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RTs by Trial Number
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 Matches RT by Individual’s Trials (s9)

0

20

40

60

80

100

120

140

160

180

200

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Fault

Model Cycles

Problem Solving Time (s)

P
ro

bl
em

 S
ol

vi
ng

 T
im

e 
(s

)

M
od

el
 C

yc
le

s

P
S

M
A

E
B

2

L
B

E
B

1
L

B
M

A

M
A

E
B

2

L
B

E
B

1
P

S

E
B

1

S
A

1
S

A
2

S
A

1

S
A

2

S
A

1

S
A

2



21/3/0419

Learns like No Other Model
 Tested with Data (!?)

∴ No model1 with automatic learning,
tested in detail across tasks while
learning

�Able does not do transition on the fly
�Anderson's tutors just add rules
�VanLehn looked at new rule

acquisition but added rules by hand
1 Al tmann (‘99) programming model

does this with recognition of objects
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Data and Regularities Left Behind

�  Modelling the perceptual improve-
m e n t s in motor skills omitte d

�  No account of initial learning of
 the task

�  Model accounts for  < 10% of the
 variability for some subjects
 (2 out of 10)

� 2nd trials on a problem are too fast in
the model; Verbal protocols not
reported her e
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Evidence for Reflection in Participants

Trial 3

Trial 5
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What Can Diag-Soar Tell Us About Reasoning
with Diagrams?

� Our subjects learn and only learn the diagram
information that is relevant to the context of
each stage of the problem-solving

� The model supports that subjects still use the
diagram information in a cyclical, iterativ e
fashion as an external resource to support the
problem-solving sequence

� Result is recognition-driven problem solving,
rather than model-driven behaviour arising
out of problem solving

� Soar’s chunking models transfer in this task
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Where Next ?

�Model transfer on a fine level of
detai l

� Explaining where learning may have
mismatched

�Apply to a more dynamic task such
as dTank (a simple tank game)

�Modeling the type of reflection
suggested in the protocols
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Thank you

� Ritter , F. E., & Bibby, P. A. (acce p t ed pending revisions).
Modeling how and when learning happens in a diagrammat ic
reasoning task.  To Cognitive Science .

� Ritter , F. E., & Bibby, P. (2001). Modeling how and when
learning happens in a simple fault-finding task. In Proceedings
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Modeling .  187-192. Mahwah, NJ: Lawrence Erlbaum.
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cognitive science. vol. 4, 60-65. London: Nature Publishing
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� T o r, K., Ritte r, F. E., Haynes, S. R., & Cohen, M. A.  (in press).
CaDaDis: A tool for displaying the behavior of cognitive models
and agents.  In Proceedings of the 13th Conference on Behavior
Representation in Modeling and S imulation.
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