
1

Incremental and Non-incremental Learning of
Control Knowledge for Planning

Daniel Borrajo Millán
joint work with Manuela Veloso, Ricardo Aler, and Susana Fernández

Universidad Carlos III de Madrid
Avda. de la Universidad, 30. 28911 Madrid, SPAIN
Web: http://scalab.uc3m.es/∼dborrajo

2

Incremental and Non-incremental Learning of
Control Knowledge for Planning

1. Motivation
2. Incremental learning. hamlet

3. Learning by genetic programming. evock

4. Discussion

3

Motivation

Motivation for hamlet

Control knowledge learning techniques that worked well for linear
planning, had problems in nonlinear planning

3

Motivation

Motivation for hamlet

Control knowledge learning techniques that worked well for linear
planning, had problems in nonlinear planning

ebl

generated over-general or over-specific control knowledge

sometimes they required domain axioms

utility and expensive chunk problems

3

Motivation

Motivation for hamlet

Control knowledge learning techniques that worked well for linear
planning, had problems in nonlinear planning

ebl

generated over-general or over-specific control knowledge

sometimes they required domain axioms

utility and expensive chunk problems

Pure inductive techniques

did not use available domain knowledge: difficulty to focus on what
is important

required powerful representation mechanisms beyond attribute-value:
predicate logic (ilp)

huge hypothesis spaces very difficult to search without the use of
learning heuristics

4

Motivation

Our solution

Incremental approach

Learning task:

Given: a domain theory, a set of training problems (it might be
empty), a set of initial control rules (usually empty), and a set of
parameters (quality metric, learning time bound, modes, . . .)

Output: a set of control rules that “efficiently” solves test problems
generating “good quality” solutions

4

Motivation

Our solution

Incremental approach

Learning task:

Given: a domain theory, a set of training problems (it might be
empty), a set of initial control rules (usually empty), and a set of
parameters (quality metric, learning time bound, modes, . . .)

Output: a set of control rules that “efficiently” solves test problems
generating “good quality” solutions

Main idea:

Uses ebl for acquiring control rules from problem solving traces

Uses relational induction (in the spirit of version spaces) to generalize
and specialize control rules

5

Incremental and Non-incremental Learning of
Control Knowledge for Planning

1. Motivation

2. Incremental learning. hamlet

3. Learning by genetic programming. evock

4. Discussion

6

Hybrid Learning. hamlet

Planning architecture. prodigy

Integrated architecture for non-linear problem solving and learning

Means-ends analysis with bidirectional search

Control knowledge learning
for efficiency

Domain knowledge acquisition

Planner

Control knowledge learning
for quality

ApprenticeExperiment

Observe Hamlet

Quality

Prodigy/EBL Static Dynamic Alpine Prodigy/Analogy

7

Hybrid Learning. hamlet

prodigy search tree

goal1

goal1

goal

apply operator subgoal

apply operator subgoal goal

Decide to reduce
differences (apply)

or continue exploring
(subgoal)

bindings
Choose

Choose an
operator

Choose a
goal

4 3

2

1

operator operator

binding binding

1 o

1 b

g

g

8

Hybrid Learning. hamlet

Incremental learning. hamlet

Quality
Metric

Learning
Mode

Optimality
parameter

Problems

Domain

Learned heuristics
(control rules)

HAMLET

PRODIGY

Analytical
Learning

Inductive
Learning

Control

9

Hybrid Learning. hamlet

Example of control rule

(control-rule select-operators-unload-airplane
(if (current-goal (at <object> <location1>))

(true-in-state (at <object> <location2>))
(true-in-state (loc-at <location1> <city1>))
(true-in-state (loc-at <location2> <city2>))
(type-of-object <object> object)
(type-of-object <location1> location))

(then select operator unload-airplane))

9

Hybrid Learning. hamlet

Example of control rule

(control-rule select-operators-unload-airplane
(if (current-goal (at <object> <location1>))

(true-in-state (at <object> <location2>))
(true-in-state (loc-at <location1> <city1>))
(true-in-state (loc-at <location2> <city2>))
(type-of-object <object> object)
(type-of-object <location1> location))

(then select operator unload-airplane))

Difficulties:

variables have to be bound to different values (cities)

constants have to be of a specific type (object and location1)

there are conditions that might not relate to the goal regression (loc-at)

10

Hybrid Learning. hamlet

Target concepts representation

(control-rule name
(if (current-goal goal-name)

[(prior-goals (literal∗))]
(true-in-state literal)∗

(other-goals (literal∗))
(type-of-object object type)∗)

(then select operators operator-name))

(control-rule name
(if (and (current-operator operator-name)

(current-goal goal-name)
[(prior-goals (literal∗))]
(true-in-state literal)∗

(other-goals (literal∗))
(type-of-object object type)∗))

(then select bindings bindings))
(control-rule name

(if (and (applicable-op operator)
[(prior-goals (literal∗))]
(true-in-state literal)∗

(other-goals (literal∗))
(type-of-object object type)∗))

(then decide {apply|sub-goal}))

(control-rule name
(if (and (target-goal literal)

[(prior-goals (literal∗))]
(true-in-state literal)∗

(other-goals (literal∗))
(type-of-object object type)∗))

(then select goals literal))

11

Hybrid Learning. hamlet

Analytical learning

The Bounded Explanation module (ebl)

extracts positive examples of the decisions made from the search
trees

generates control rules from them selecting their preconditions

11

Hybrid Learning. hamlet

Analytical learning

The Bounded Explanation module (ebl)

extracts positive examples of the decisions made from the search
trees

generates control rules from them selecting their preconditions

Target concepts:

select an unachieved goal

select an operator to achieve some goal

select bindings for an operator when trying to achieve a goal
decide to apply an operator for achieving a goal or subgoal on an
unachieved goal

11

Hybrid Learning. hamlet

Analytical learning

The Bounded Explanation module (ebl)

extracts positive examples of the decisions made from the search
trees

generates control rules from them selecting their preconditions

Target concepts:

select an unachieved goal

select an operator to achieve some goal

select bindings for an operator when trying to achieve a goal
decide to apply an operator for achieving a goal or subgoal on an
unachieved goal

hamlet considers multiple target concepts, each one being a disjunction
of conjunctions (partially solves the utility problem)

12
Hybrid Learning. hamlet

Example of logistics problem

A
PL2

PL1

C1
C3

C2

13

Hybrid Learning. hamlet

Example of search tree

unload−truck

at−object(A,C2)

finish()
finish

done

unload−airplane
unload−airplane(A,PL2,C2)
inside−airplane(A,PL2)
load−airplane
load−airplane(A,PL2,C1)
LOAD−AIRPLANE(A,PL2,C1)
at−airplane(PL2,C2)
fly−airplane
fly−airplane(PL2,C1,C2)
FLY−AIRPLANE(PL2,C1,C2)
UNLOAD−AIRPLANE(A,PL2,C1)

unload−airplane(A,PL1,C2)
inside−airplane(A,PL1)

load−airplane
load−airplane(A,PL1,C1)

at−airplane(PL1,C1)
fly−airplane

fly−airplane(PL1,C3,C1)
FLY−AIRPLANE(PL1,C3,C1)

LOAD−AIRPLANE(A,PL1,C1)
at−airplane(PL1,C2)

fly−airplane
fly−airplane(PL1,C1,C2)

FLY−AIRPLANE(PL1,C1,C2)
UNLOAD−AIRPLANE(A,PL1,C1)

14

Hybrid Learning. hamlet

Learning for plan length

done

finish
finish()

at−object(A,C2)

unload−truck unload−airplane
unload−airplane(A,PL2,C2)
inside−airplane(A,PL2)
load−airplane
load−airplane(A,PL2,C1)
LOAD−AIRPLANE(A,PL2,C1)
at−airplane(PL2,C2)
fly−airplane
fly−airplane(PL2,C1,C2)
FLY−AIRPLANE(PL2,C1,C2)
UNLOAD−AIRPLANE(A,PL2,C1)

unload−airplane(A,PL1,C2)
inside−airplane(A,PL1)

load−airplane
load−airplane(A,PL1,C1)

at−airplane(PL1,C1)
fly−airplane

fly−airplane(PL1,C3,C1)
FLY−AIRPLANE(PL1,C3,C1)

LOAD−AIRPLANE(A,PL1,C1)
at−airplane(PL1,C2)

fly−airplane
fly−airplane(PL1,C1,C2)

FLY−AIRPLANE(PL1,C1,C2)
UNLOAD−AIRPLANE(A,PL1,C1)

15

Hybrid Learning. hamlet

Learning for quality

done

finish
finish()

at−object(A,C2)

unload−truck unload−airplane
unload−airplane(A,PL2,C2)
inside−airplane(A,PL2)
load−airplane
load−airplane(A,PL2,C1)
LOAD−AIRPLANE(A,PL2,C1)
at−airplane(PL2,C2)
fly−airplane
fly−airplane(PL2,C1,C2)
FLY−AIRPLANE(PL2,C1,C2)
UNLOAD−AIRPLANE(A,PL2,C1)

300
20

200
20

540

20

600
20

640

unload−airplane(A,PL1,C2)
inside−airplane(A,PL1)

load−airplane
load−airplane(A,PL1,C1)

at−airplane(PL1,C1)
fly−airplane

fly−airplane(PL1,C3,C1)
FLY−AIRPLANE(PL1,C3,C1)

LOAD−AIRPLANE(A,PL1,C1)
at−airplane(PL1,C2)

fly−airplane
fly−airplane(PL1,C1,C2)

FLY−AIRPLANE(PL1,C1,C2)
UNLOAD−AIRPLANE(A,PL1,C1)

16

Hybrid Learning. hamlet

Inductive learning. Generalization

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>))

(true-in-state (inside-airplane <object> <plane>))
(true-in-state (at-airplane <plane> <airport>)))

(then select operator unload-airplane))
(control-rule select-operators-unload-airplane

(if (current-goal (at-object <object> <airport>))
(true-in-state (inside-airplane <object> <plane>))
(true-in-state (at-airplane <plane> <airport1>)))

(then select operator unload-airplane))

16

Hybrid Learning. hamlet

Inductive learning. Generalization

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>))

(true-in-state (inside-airplane <object> <plane>))
(true-in-state (at-airplane <plane> <airport>)))

(then select operator unload-airplane))
(control-rule select-operators-unload-airplane

(if (current-goal (at-object <object> <airport>))
(true-in-state (inside-airplane <object> <plane>))
(true-in-state (at-airplane <plane> <airport1>)))

(then select operator unload-airplane))
(control-rule select-operators-unload-airplane

(if (current-goal (at-object <object> <airport>))
(true-in-state (inside-airplane <object> <plane>)))

(then select operator unload-airplane))

17

Hybrid Learning. hamlet

Finding negative examples

Negative example of a control rule: it was applied at some node that
lead to a failure, or a worse solution than the best sibling solution

Only the most general negative examples are stored for each target
concept

They serve two purposes

refine an overly general rule

establish an upper limit of generalization for future applications of
the generalization operators

18

Hybrid Learning. hamlet

Inductive learning. Specialization

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>))

(true-in-state (inside-airplane <object> <plane>)))
(then select operator unload-airplane))

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>))

(true-in-state (at-object <object> <airport1>)))
(then select operator unload-airplane))

18

Hybrid Learning. hamlet

Inductive learning. Specialization

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>))

(true-in-state (inside-airplane <object> <plane>)))
(then select operator unload-airplane))

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>))

(true-in-state (at-object <object> <airport1>)))
(then select operator unload-airplane))

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>)))
(then select operator unload-airplane))

19

Hybrid Learning. hamlet

Incremental flavor

E1 +

E2 +

19

Hybrid Learning. hamlet

Incremental flavor

E1 +

E2 +

R1

R2

19

Hybrid Learning. hamlet

Incremental flavor

E1 +

E2 +

R1

R2
I1

19

Hybrid Learning. hamlet

Incremental flavor

E1 +

E2 +

R1

R2
I1

E3 + R3

I2

19

Hybrid Learning. hamlet

Incremental flavor

E1 +

E2 +

R1

R2
I1

E3 + R3

I2

E4
-

19

Hybrid Learning. hamlet

Incremental flavor

E1 +

E2 +

R1

R2
I1

E3 + R3

I2

E4
-

RF1

19

Hybrid Learning. hamlet

Incremental flavor

E1 +

E2 +

R1

R2
I1

E3 + R3

I2

E4
-

RF1

RF2

RF3

20

Hybrid Learning. hamlet

Problems with hamlet

It does not always generate better control knowledge by observing more
and more examples

incrementality (partially solved through revisiting problems)

generalization and specialization procedures require to add/delete
the right preconditions

it learns from simple problems search trees, preferably fully expanded

it depends very much on the training examples (inductive method):
not simple, not difficult (the right examples to learn from might be
too difficult)

reduced language for describing control rules: adding new types of
conditions is hard given that generalization/specialization operators
are not declaratively represented

But, it provides a very good starting point for another type of learner
(machine or human)

21

Incremental and Non-incremental Learning of
Control Knowledge for Planning

1. Motivation

2. Incremental learning. hamlet

3. Learning by genetic programming. evock

4. Discussion

22

Learning by genetic programming. evock

EvoCK architecture

Problem

Hamlet

Generator
EvoCK

Prodigy

Best
Individual

Hamlet
Individual

Knowledge
Background

Population

Planning
Problems

Control Rules and Problem
Search Tree

Performance Individual
and Problems

23

Learning by genetic programming. evock

Genetic Programming of control knowledge.
EvoCK

Grammar-based

Individual: set of control rules

Genetic operators

Crossover (standard, informed, adding)

Mutation (standard, removing, adding)

Specific (renaming variables, generalization)

Fitness function

Completeness

∗ Number of solved problems

∗ Number of solved problems better than prodigy

Generality

Compactness

24

Learning by genetic programming. evock

Example of an individual

I1

THEN

<x>

holding

current−goal

IF

true−in−state

on

<x> <y>

select

operator

unstack

current−goal true−in−state select

THEN

select−op−unstack−1 select−op−unstack−2

clear

<x>

on

<y> <x>

operator

unstack

IF

25

Learning by genetic programming. evock

Grammar-based GP. Domain-independent

LIST-ROOT-T → RULE-T | (list RULE-T LIST-ROOT-T)

RULE-T → (rule AND-T ACTION-T)

AND-T → METAPRED-T | (and METAPRED-T AND-T)

METAPRED-T → (true-in-state GOAL-T) | (target-goal GOAL-T) |
(current-goal GOAL-T) |
(some-candidate-goals LIST-OF-GOALS-T)

LIST-OF-GOALS-T → GOAL-T | (list-goal GOAL-T LIST-OF-GOALS-T)

ACTION-T → (select-goal GOAL-T) | (select-operator OP-T) |
(select-bindings BINDINGS-T) | sub-goal | apply

26

Learning by genetic programming. evock

Grammar-based GP. Domain-dependent

OP-T → load-truck | load-airplane | unload-truck |
unload-airplane | drive-truck | fly-airplane

BINDINGS-T → (load-truck-b OBJECT-T TRUCK-T LOCATION-T) |
(load-airplane-b OBJECT-T AIRPLANE-T AIRPORT-T) |
(unload-truck-b OBJECT-T TRUCK-T LOCATION-T) |
(unload-airplane-b OBJECT-T AIRPLANE-T AIRPORT-T) |
(drive-truck TRUCK-T LOCATION-T LOCATION-T) |
(fly-airplane AIRPLANE-T AIRPORT-T AIRPORT-T)

GOAL-T → (at-truck TRUCK-T LOCATION-T) |
(at-obj OBJECT-T LOCATION-T) |
(inside-truck OBJECT-T TRUCK-T) |
(inside-airplane OBJECT-T AIRPLANE-T)

27

Incremental and Non-incremental Learning of
Control Knowledge for Planning

1. Motivation

2. Incremental learning. hamlet

3. Learning by genetic programming. evock

4. Discussion

28

Discussion

Related work

Linear: strips [Fikes et al., 1972], Rubik’s cube [Korf, 1985], prodigy/ebl [Minton,

1988], static [Etzioni, 1993], dynamic [Pérez and Etzioni, 1992], alpine [Knoblock,

1991], grasshoper [Leckie and Zukerman, 1998], lex [Mitchell et al., 1983],

acm [Langley, 1983], lebl [Tadepalli, 1989], dolphin [Zelle and Mooney, 1993],

experimenter [Carbonell and Gil, 1990], . . .

Nonlinear “classical”: soar [Laird et al., 1986], failsafe [Bhatnagar,

1992], observe [Wang, 1994], composer [Gratch and DeJong, 1992],

priar [Kambhampati, 1989], snlp+ebg [Kambhampati and Kedar, 1991],

snlp+ebl [Katukam and Kambhampati, 1994], ucpop+ebl [Qu and Kambhampati,

1995], quality [Pérez and Carbonell, 1994], SteppingStone [Ruby and Kibler,

1992], ucpop+foil [Estlin and Mooney, 1995], pipp [Upal and Elio, 1998],

prodigy/analogy [Veloso, 1994], DerSNLP [Ihrig and Kambhampati, 1996],

hamlet [Borrajo and Veloso, 1997], evock [Aler et al., 2002], ExEL [Reddy and

Tadepalli, 1999], . . .

29

Discussion

More related work

Nonlinear “non classical”: rewrite rules [Ambite et al., 2000,
Upal and Elio, 2000], camel [Ilghami et al., 2002], htn
models [Garland et al., 2001], graphplan+ebl [Kambhampati,
2000], satplan+foil [Huang et al., 2000], generalized
policies [Khardon, 1999, Mart́ın and Geffner, 2000], hap [Vrakas et
al., 2003]

MDP models: reinforcement learning [Kaelbling et al., 1996],
Q-learning [Watkins and Dayan, 1992], temporal differences [Sutton,
1988, Tesauro, 1992], lope [Garćıa-Mart́ınez and Borrajo, 2000]

30

Discussion

hamlet vs. evock

hamlet

knows about learning in planning

learning operators require right examples to modify candidate
hypotheses

incremental

planner and language dependent

evock

does not know it is doing learning in planning

learning operators do not require right examples to modify candidate
hypotheses

non-incremental

grammar dependent

31

Discussion

Incrementality

Incrementality allows

focusing on one example: juice extraction (ebl)

generating the next-best example

better approaching changes in target concept (life-long learning)

knowing what control rule is responsible for what

31

Discussion

Incrementality

Incrementality allows

focusing on one example: juice extraction (ebl)

generating the next-best example

better approaching changes in target concept (life-long learning)

knowing what control rule is responsible for what

Non-incrementality allows

having a global view of a distribution of examples

reducing the effect of noise or particular examples

better deciding what and how to generalize and specialize

31

Discussion

Incrementality

Incrementality allows

focusing on one example: juice extraction (ebl)

generating the next-best example

better approaching changes in target concept (life-long learning)

knowing what control rule is responsible for what

Non-incrementality allows

having a global view of a distribution of examples

reducing the effect of noise or particular examples

better deciding what and how to generalize and specialize

They can be complementary

32

Discussion

General discussion

Learning techniques should reflect somehow the way by which decisions
are made by the problem solver forward vs. backward

The knowledge about how to make a decision should be explicit in the
meta-state evaluation functions or cost functions

The base problem solver should be able to solve training problems are

easy or incompletely solved problems enough?

If quality is important, it should also provide at least two different-quality
solutions all solutions is the optimum

If a learning technique acquires individual control knowledge, the
decisions should be reproducible to be of use utility problem

33

Discussion

General discussion

Learning in problem solving also needs to worry about representativeness
of examples much bigger search spaces

It is difficult to add conditions on numbers, negative constrains (and
quantification) to the rules representation

Combining machine learning and humans is a very effective approach
mixed initiative, domain axioms, extra predicates, temporal formulae, . . .

34

Discussion

On evaluation of learning in planning

Difficult task

What to measure?

Efficiency: time, solved problems

Quality: solution length (sequential, parallel), makespan, others

Combination

How to compare?

with or without prior knowledge

domain representation

set of problems

Against what?

different learners in different planners

knowledge-based planners

efficient state of the art planners

35

Discussion

Still to be solved. Zenotravel

(control-rule select-airplane-for-zoom
(if (current-goal (at-object <object> <airport>))

(current-operator zoom)
(true-in-state (at-object <object> <airport1>))
(true-in-state (at-airplane <plane> <airport2>))
(cheapest-airplane-for-zoom <object> <plane>

<airport> <airport1>
<airport2>))

(then select bindings ((<obj> . <object>)
(<airplane> . <plane>))))

36

Discussion

More recent and future work

Mixed initiative

Effects of knowledge representation

Effects of prior knowledge

Learning for multiple criteria

Learning for HTN+POP planners

Using numerical predicates on conditions of control rules

Active learning: on-line generation of appropriate training problems

Learning for planning and scheduling

Learning in more recent problem solvers

37

Referencias

[Aler et al., 2002] Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Using genetic programming to

learn and improve control knowledge. Artificial Intelligence, 141(1-2):29–56, October 2002.

[Ambite et al., 2000] José Luis Ambite, Craig A. Knoblock, and Steven Minton. Learning plan

rewriting rules. In Proceedings of the Fifth International Conference on Artificial Intelligence

Planning and Scheduling, pages 14–17, Breckenbridge, CO (USA), April 2000.

[Bhatnagar, 1992] Neeraj Bhatnagar. On-line learning from search failures. PhD thesis, Rutgers

University, 1992.

[Borrajo and Veloso, 1997] Daniel Borrajo and Manuela Veloso. Lazy incremental learning of

control knowledge for efficiently obtaining quality plans. AI Review Journal. Special Issue on

Lazy Learning, 11(1-5):371–405, February 1997. Also in the book ”Lazy Learning”, David Aha

(ed.), Kluwer Academic Publishers, May 1997, ISBN 0-7923-4584-3.

[Carbonell and Gil, 1990] Jaime G. Carbonell and Yolanda Gil. Learning by experimentation: The

operator refinement method. In R. S. Michalski and Y. Kodratoff, editors, Machine Learning: An

Artificial Intelligence Approach, Volume III, pages 191–213. Morgan Kaufmann, Palo Alto, CA,

1990.

[Estlin and Mooney, 1995] Tara A. Estlin and Raymond Mooney. Hybrid learning of search control

for partial order planning. Technical report, University of Texas, 1995.

38

[Etzioni, 1993] Oren Etzioni. Acquiring search-control knowledge via static analysis. Artificial

Intelligence, 62(2):255–301, 1993.

[Fikes et al., 1972] Richard E. Fikes, P. E. Hart, and Nils J. Nilsson. Learning and executing

generalized robot plans. Artificial Intelligence, 3:251–288, 1972.

[Garćıa-Mart́ınez and Borrajo, 2000] Ramón Garćıa-Mart́ınez and Daniel Borrajo. An integrated

approach of learning, planning, and execution. Journal of Intelligent and Robotic Systems,

29(1):47–78, September 2000.

[Garland et al., 2001] A. Garland, K. Ryall, and C. Rich. Learning hierarchical task models by

defining and refining examples. In In First International Conference on Knowledge Capture, 2001.

[Gratch and DeJong, 1992] Jonathan Gratch and Gerald DeJong. COMPOSER: A probabilistic

solution to the utility problem in speed-up learning. In Proceedings of the Tenth National

Conference on Artificial Intelligence, pages 235–240, 1992.

[Huang et al., 2000] Yi-Cheng Huang, Bart Selman, and Henry Kautz. Learning declarative control

rules for constraint-based planning. In Pat Langley, editor, Proceedings of the Seventeenth

International Conference on Machine Learning, ICML’00, Stanford, CA (USA), June-July 2000.

[Ihrig and Kambhampati, 1996] Laurie H. Ihrig and Subbarao Kambhampati. Design and

implementation of a replay framework based on a partial order planner. In Proceedings of the

Thirteenth National Conference on Artificial Intelligence (AAAI-96), pages 849–854, Portland,

Oregon, USA, 1996. AAAI Press / The MIT Press.

39

[Ilghami et al., 2002] Okhtay Ilghami, Dana S. Nau, Héctor Muñoz-Avila, and David W. Aha.

Camel: Learning method preconditions for HTN planning. In Malik Ghallab, Joachim Hertzberg,

and Paolo Traverso, editors, Proceedings of the Sixth International Conference on Artificial

Intelligence Planning Systems (AIPS-02), pages 131–141, Toulouse (France), 23-17 April 2002.

AAAI Press.

[Kaelbling et al., 1996] Lelie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.

Reinforcement learning: A survey. International Journal of Artificial Intelligence Research, pages

237–285, 1996.

[Kambhampati and Kedar, 1991] Subbarao Kambhampati and Smadar Kedar. Explanation based

generalization of partially ordered plans. In Proceedings of the Ninth National Conference on

Artificial Intelligence, pages 679–685, Anaheim, CA, 1991. AAAI Press.

[Kambhampati, 1989] Subbarao Kambhampati. Flexible Reuse and Modification in Hierarchical

Planning: A Validation Structure Based Approach. PhD thesis, Computer Vision Laboratory,

Center for Automation Research, University of Maryland, College Park, MD, 1989.

[Kambhampati, 2000] Subbarao Kambhampati. Planning graph as a (dynamic) CSP: Exploiting

EBL, DDB and other CSP search techniques in Graphplan. Journal of Artificial Intelligence

Research, 12:1–34, 2000.

[Katukam and Kambhampati, 1994] Suresh Katukam and Subbarao Kambhampati. Learning

40

explanation-based search control rules for partial order planning. In Proceedings of the Twelfth

National Conference on Artificial Intelligence, pages 582–587, Seattle, WA, 1994. AAAI Press.

[Khardon, 1999] Roni Khardon. Learning action strategies for planning domains. Artificial

Intelligence, 113(1-2):125–148, 1999.

[Knoblock, 1991] Craig A. Knoblock. Automatically Generating Abstractions for Problem Solving.

PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1991.

Available as technical report CMU-CS-91-120.

[Korf, 1985] Richard E. Korf. Macro-operators: A weak method for learning. Artificial Intelligence,

26:35–77, 1985.

[Laird et al., 1986] John E. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking in SOAR: The

anatomy of a general learning mechanism. Machine Learning, 1:11–46, 1986.

[Langley, 1983] Pat Langley. Learning effective search heuristics. In Proceedings of the Eighth

International Joint Conference on Artificial Intelligence, pages 419–421, Los Altos, CA, 1983.

Morgan Kaufmann.

[Leckie and Zukerman, 1998] Christopher Leckie and Ingrid Zukerman. Inductive learning of search

control rules for planning. Artificial Intelligence, 101(1–2):63–98, May 1998.

[Mart́ın and Geffner, 2000] Mario Mart́ın and Héctor Geffner. Learning generalized policies in

planning using concept languages. In Proceedings of the 7th Int. Conf. on Knowledge

Representation and Reasoning (KR 2000), Colorado, 2000. Morgan Kaufmann.

41

[Minton, 1988] Steven Minton. Learning Effective Search Control Knowledge: An

Explanation-Based Approach. Kluwer Academic Publishers, Boston, MA, 1988.

[Mitchell et al., 1983] Tom M. Mitchell, Paul E. Utgoff, and R. B. Banerji. Learning by

experimentation: Acquiring and refining problem-solving heuristics. In Machine Learning, An

Artificial Intelligence Approach. Tioga Press, Palo Alto, CA, 1983.

[Pérez and Carbonell, 1994] M. Alicia Pérez and Jaime G. Carbonell. Control knowledge to improve

plan quality. In Proceedings of the Second International Conference on AI Planning Systems,

pages 323–328, Chicago, IL, 1994. AAAI Press, CA.

[Pérez and Etzioni, 1992] M. Alicia Pérez and Oren Etzioni. DYNAMIC: A new role for training

problems in EBL. In Proceedings of the Ninth International Conference on Machine Learning,

pages 367–372. Morgan Kaufmann, Aberdeen, Scotland, 1992.

[Qu and Kambhampati, 1995] Yong Qu and Subbarao Kambhampati. Learning search control rules

for plan-space planners: Factors affecting the performance. Technical report, Arizona State

University, February 1995.

[Reddy and Tadepalli, 1999] Chandra Reddy and Prasad Tadepalli. Learning horn definitions:

Theory and an application to planning. New Generation Computing, 17:77–98, 1999.

[Ruby and Kibler, 1992] David Ruby and Dennis Kibler. Learning episodes for optimization. In

Proceedings of the Ninth International Conference on Machine Learning, pages 379–384,

Aberdeen, Scotland, 1992. Morgan Kaufmann.

42

[Sutton, 1988] Richard Sutton. Learning to predict by the methods of temporal differences. Machine

Learning, 3(1):9–44, August 1988.

[Tadepalli, 1989] Prasad Tadepalli. Lazy explanation-based learning: A solution to the intractable

theory problem. In Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence, pages 694–700, San Mateo, CA, 1989. Morgan Kaufmann.

[Tesauro, 1992] Gerald Tesauro. Practical issues in temporal difference learning. Machine Learning,

8(3/4):257–277, May 1992.

[Upal and Elio, 1998] Muhammad Afzal Upal and Reneé Elio. Learning to improve quality of the

solutions produced by partial-order planners. In In Notes of the AIPS-98 Workshop on Knowledge

Engineering and Acquisition for Planning: Bridging Theory and Practice, pages 94–104, 1998.

[Upal and Elio, 2000] M. Apzal Upal and Renee Elio. Learning search control rules versus rewrite

rules to improve plan quality. In Proceedings of the Thirteenth Canadian Conference on Artificial

Intelligence, pages 240–253, New York, 2000. Springer-Verlag.

[Veloso, 1994] Manuela Veloso. Planning and Learning by Analogical Reasoning. Springer Verlag,

December 1994.

[Vrakas et al., 2003] Dimitris Vrakas, Grigorios Tsoumakas, Nick Bassiliades, and Ioannis Vlahavas.

Learning rules for adaptive planning. In Proceedings of ICAPS’03, Trento (Italia), June 2003.

[Wang, 1994] Xuemei Wang. Learning planning operators by observation and practice. In

43

Proceedings of the Second International Conference on AI Planning Systems, AIPS-94, pages

335–340, Chicago, IL, June 1994. AAAI Press, CA.

[Watkins and Dayan, 1992] C. J. C. H. Watkins and P. Dayan. Technical note: Q-learning. Machine

Learning, 8(3/4):279–292, May 1992.

[Zelle and Mooney, 1993] J. Zelle and R. Mooney. Combining FOIL and EBG to speed-up

logic programs. In Proceedings of the Thirteenth International Joint Conference on Artificial

Intelligence, pages 1106–1113, Chambery, France, 1993. Morgan Kaufmann.

