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Motivation

Motivation for hamlet

Control knowledge learning techniques that worked well for linear
planning, had problems in nonlinear planning

ebl

generated over-general or over-specific control knowledge

sometimes they required domain axioms

utility and expensive chunk problems

Pure inductive techniques

did not use available domain knowledge: difficulty to focus on what
is important

required powerful representation mechanisms beyond attribute-value:
predicate logic (ilp)

huge hypothesis spaces very difficult to search without the use of
learning heuristics
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Motivation

Our solution

Incremental approach

Learning task:

Given: a domain theory, a set of training problems (it might be
empty), a set of initial control rules (usually empty), and a set of
parameters (quality metric, learning time bound, modes, . . . )

Output: a set of control rules that “efficiently” solves test problems
generating “good quality” solutions
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Motivation

Our solution

Incremental approach

Learning task:

Given: a domain theory, a set of training problems (it might be
empty), a set of initial control rules (usually empty), and a set of
parameters (quality metric, learning time bound, modes, . . . )

Output: a set of control rules that “efficiently” solves test problems
generating “good quality” solutions

Main idea:

Uses ebl for acquiring control rules from problem solving traces

Uses relational induction (in the spirit of version spaces) to generalize
and specialize control rules
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1. Motivation

2. Incremental learning. hamlet

3. Learning by genetic programming. evock
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Hybrid Learning. hamlet

Planning architecture. prodigy

Integrated architecture for non-linear problem solving and learning

Means-ends analysis with bidirectional search

Control knowledge learning
for efficiency

Domain knowledge acquisition

Planner

Control knowledge learning
for quality

ApprenticeExperiment

Observe Hamlet

Quality

Prodigy/EBL Static Dynamic Alpine Prodigy/Analogy
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Hybrid Learning. hamlet

prodigy search tree

goal1

goal1

goal

apply operator subgoal

apply operator subgoal goal

Decide to reduce
differences (apply)

or continue exploring
(subgoal)

bindings
Choose
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operator
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goal
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Hybrid Learning. hamlet

Incremental learning. hamlet

Quality
Metric

Learning
Mode

Optimality
parameter

Problems

Domain

Learned heuristics
(control rules)

HAMLET

PRODIGY

Analytical
Learning

Inductive
Learning

Control
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Hybrid Learning. hamlet

Example of control rule

(control-rule select-operators-unload-airplane
(if (current-goal (at <object> <location1>))

(true-in-state (at <object> <location2>))
(true-in-state (loc-at <location1> <city1>))
(true-in-state (loc-at <location2> <city2>))
(type-of-object <object> object)
(type-of-object <location1> location))

(then select operator unload-airplane))
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Hybrid Learning. hamlet

Example of control rule

(control-rule select-operators-unload-airplane
(if (current-goal (at <object> <location1>))

(true-in-state (at <object> <location2>))
(true-in-state (loc-at <location1> <city1>))
(true-in-state (loc-at <location2> <city2>))
(type-of-object <object> object)
(type-of-object <location1> location))

(then select operator unload-airplane))

Difficulties:

variables have to be bound to different values (cities)

constants have to be of a specific type (object and location1)

there are conditions that might not relate to the goal regression (loc-at)
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Hybrid Learning. hamlet

Target concepts representation

(control-rule name
(if (current-goal goal-name)

[(prior-goals (literal∗))]
(true-in-state literal)∗

(other-goals (literal∗))
(type-of-object object type)∗)

(then select operators operator-name))

(control-rule name
(if (and (current-operator operator-name)

(current-goal goal-name)
[(prior-goals (literal∗))]
(true-in-state literal)∗

(other-goals (literal∗))
(type-of-object object type)∗))

(then select bindings bindings))
(control-rule name

(if (and (applicable-op operator)
[(prior-goals (literal∗))]
(true-in-state literal)∗

(other-goals (literal∗))
(type-of-object object type)∗))

(then decide {apply|sub-goal}))

(control-rule name
(if (and (target-goal literal)

[(prior-goals (literal∗))]
(true-in-state literal)∗

(other-goals (literal∗))
(type-of-object object type)∗))

(then select goals literal))
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Hybrid Learning. hamlet

Analytical learning

The Bounded Explanation module (ebl)

extracts positive examples of the decisions made from the search
trees

generates control rules from them selecting their preconditions
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The Bounded Explanation module (ebl)

extracts positive examples of the decisions made from the search
trees

generates control rules from them selecting their preconditions

Target concepts:

select an unachieved goal

select an operator to achieve some goal

select bindings for an operator when trying to achieve a goal
decide to apply an operator for achieving a goal or subgoal on an
unachieved goal
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Hybrid Learning. hamlet

Analytical learning

The Bounded Explanation module (ebl)

extracts positive examples of the decisions made from the search
trees

generates control rules from them selecting their preconditions

Target concepts:

select an unachieved goal

select an operator to achieve some goal

select bindings for an operator when trying to achieve a goal
decide to apply an operator for achieving a goal or subgoal on an
unachieved goal

hamlet considers multiple target concepts, each one being a disjunction
of conjunctions (partially solves the utility problem)
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Example of logistics problem

A
PL2

PL1

C1
C3

C2
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Hybrid Learning. hamlet

Example of search tree

unload−truck

at−object(A,C2)

*finish*()
*finish*

done

unload−airplane
unload−airplane(A,PL2,C2)
inside−airplane(A,PL2)
load−airplane
load−airplane(A,PL2,C1)
LOAD−AIRPLANE(A,PL2,C1)
at−airplane(PL2,C2)
fly−airplane
fly−airplane(PL2,C1,C2)
FLY−AIRPLANE(PL2,C1,C2)
UNLOAD−AIRPLANE(A,PL2,C1)

unload−airplane(A,PL1,C2)
inside−airplane(A,PL1)

load−airplane
load−airplane(A,PL1,C1)

at−airplane(PL1,C1)
fly−airplane

fly−airplane(PL1,C3,C1)
FLY−AIRPLANE(PL1,C3,C1)

LOAD−AIRPLANE(A,PL1,C1)
at−airplane(PL1,C2)

fly−airplane
fly−airplane(PL1,C1,C2)

FLY−AIRPLANE(PL1,C1,C2)
UNLOAD−AIRPLANE(A,PL1,C1)
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Hybrid Learning. hamlet

Learning for plan length

done

*finish*
*finish*()

at−object(A,C2)

unload−truck unload−airplane
unload−airplane(A,PL2,C2)
inside−airplane(A,PL2)
load−airplane
load−airplane(A,PL2,C1)
LOAD−AIRPLANE(A,PL2,C1)
at−airplane(PL2,C2)
fly−airplane
fly−airplane(PL2,C1,C2)
FLY−AIRPLANE(PL2,C1,C2)
UNLOAD−AIRPLANE(A,PL2,C1)

unload−airplane(A,PL1,C2)
inside−airplane(A,PL1)

load−airplane
load−airplane(A,PL1,C1)

at−airplane(PL1,C1)
fly−airplane

fly−airplane(PL1,C3,C1)
FLY−AIRPLANE(PL1,C3,C1)

LOAD−AIRPLANE(A,PL1,C1)
at−airplane(PL1,C2)

fly−airplane
fly−airplane(PL1,C1,C2)

FLY−AIRPLANE(PL1,C1,C2)
UNLOAD−AIRPLANE(A,PL1,C1)



15

Hybrid Learning. hamlet

Learning for quality

done

*finish*
*finish*()

at−object(A,C2)

unload−truck unload−airplane
unload−airplane(A,PL2,C2)
inside−airplane(A,PL2)
load−airplane
load−airplane(A,PL2,C1)
LOAD−AIRPLANE(A,PL2,C1)
at−airplane(PL2,C2)
fly−airplane
fly−airplane(PL2,C1,C2)
FLY−AIRPLANE(PL2,C1,C2)
UNLOAD−AIRPLANE(A,PL2,C1)

300
20

200
20

540

20

600
20

640

unload−airplane(A,PL1,C2)
inside−airplane(A,PL1)

load−airplane
load−airplane(A,PL1,C1)

at−airplane(PL1,C1)
fly−airplane

fly−airplane(PL1,C3,C1)
FLY−AIRPLANE(PL1,C3,C1)

LOAD−AIRPLANE(A,PL1,C1)
at−airplane(PL1,C2)

fly−airplane
fly−airplane(PL1,C1,C2)

FLY−AIRPLANE(PL1,C1,C2)
UNLOAD−AIRPLANE(A,PL1,C1)
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Hybrid Learning. hamlet

Inductive learning. Generalization

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>))

(true-in-state (inside-airplane <object> <plane>))
(true-in-state (at-airplane <plane> <airport>)))

(then select operator unload-airplane))
(control-rule select-operators-unload-airplane

(if (current-goal (at-object <object> <airport>))
(true-in-state (inside-airplane <object> <plane>))
(true-in-state (at-airplane <plane> <airport1>)))

(then select operator unload-airplane))
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Hybrid Learning. hamlet

Inductive learning. Generalization

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>))

(true-in-state (inside-airplane <object> <plane>))
(true-in-state (at-airplane <plane> <airport>)))

(then select operator unload-airplane))
(control-rule select-operators-unload-airplane

(if (current-goal (at-object <object> <airport>))
(true-in-state (inside-airplane <object> <plane>))
(true-in-state (at-airplane <plane> <airport1>)))

(then select operator unload-airplane))
(control-rule select-operators-unload-airplane

(if (current-goal (at-object <object> <airport>))
(true-in-state (inside-airplane <object> <plane>)))

(then select operator unload-airplane))
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Hybrid Learning. hamlet

Finding negative examples

Negative example of a control rule: it was applied at some node that
lead to a failure, or a worse solution than the best sibling solution

Only the most general negative examples are stored for each target
concept

They serve two purposes

refine an overly general rule

establish an upper limit of generalization for future applications of
the generalization operators
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Hybrid Learning. hamlet

Inductive learning. Specialization

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>))

(true-in-state (inside-airplane <object> <plane>)))
(then select operator unload-airplane))

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>))

(true-in-state (at-object <object> <airport1>)))
(then select operator unload-airplane))
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Hybrid Learning. hamlet

Inductive learning. Specialization

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>))

(true-in-state (inside-airplane <object> <plane>)))
(then select operator unload-airplane))

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>))

(true-in-state (at-object <object> <airport1>)))
(then select operator unload-airplane))

(control-rule select-operators-unload-airplane
(if (current-goal (at-object <object> <airport>)))
(then select operator unload-airplane))



19

Hybrid Learning. hamlet

Incremental flavor

E1 +

E2 +
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Hybrid Learning. hamlet

Incremental flavor

E1 +

E2 +

R1

R2
I1

E3 + R3

I2

E4
-

RF1

RF2

RF3
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Hybrid Learning. hamlet

Problems with hamlet

It does not always generate better control knowledge by observing more
and more examples

incrementality (partially solved through revisiting problems)

generalization and specialization procedures require to add/delete
the right preconditions

it learns from simple problems search trees, preferably fully expanded

it depends very much on the training examples (inductive method):
not simple, not difficult (the right examples to learn from might be
too difficult)

reduced language for describing control rules: adding new types of
conditions is hard given that generalization/specialization operators
are not declaratively represented

But, it provides a very good starting point for another type of learner
(machine or human)
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Incremental and Non-incremental Learning of
Control Knowledge for Planning

1. Motivation

2. Incremental learning. hamlet

3. Learning by genetic programming. evock

4. Discussion
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Learning by genetic programming. evock

EvoCK architecture

Problem

Hamlet

Generator
EvoCK

Prodigy

Best
Individual

Hamlet
Individual

Knowledge
Background

Population

Planning
Problems

Control Rules and Problem
Search Tree

Performance Individual
and Problems
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Learning by genetic programming. evock

Genetic Programming of control knowledge.
EvoCK

Grammar-based

Individual: set of control rules

Genetic operators

Crossover (standard, informed, adding)

Mutation (standard, removing, adding)

Specific (renaming variables, generalization)

Fitness function

Completeness

∗ Number of solved problems

∗ Number of solved problems better than prodigy

Generality

Compactness
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Learning by genetic programming. evock

Example of an individual

I1

THEN

<x>

holding

current−goal

IF

true−in−state

on

<x> <y>

select

operator

unstack

current−goal true−in−state select

THEN

select−op−unstack−1 select−op−unstack−2

clear

<x>

on

<y> <x>

operator

unstack

IF
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Learning by genetic programming. evock

Grammar-based GP. Domain-independent

LIST-ROOT-T → RULE-T | (list RULE-T LIST-ROOT-T)

RULE-T → (rule AND-T ACTION-T)

AND-T → METAPRED-T | (and METAPRED-T AND-T)

METAPRED-T → (true-in-state GOAL-T) | (target-goal GOAL-T) |
(current-goal GOAL-T) |
(some-candidate-goals LIST-OF-GOALS-T)

LIST-OF-GOALS-T → GOAL-T | (list-goal GOAL-T LIST-OF-GOALS-T)

ACTION-T → (select-goal GOAL-T) | (select-operator OP-T) |
(select-bindings BINDINGS-T) | sub-goal | apply
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Learning by genetic programming. evock

Grammar-based GP. Domain-dependent

OP-T → load-truck | load-airplane | unload-truck |
unload-airplane | drive-truck | fly-airplane

BINDINGS-T → (load-truck-b OBJECT-T TRUCK-T LOCATION-T) |
(load-airplane-b OBJECT-T AIRPLANE-T AIRPORT-T) |
(unload-truck-b OBJECT-T TRUCK-T LOCATION-T) |
(unload-airplane-b OBJECT-T AIRPLANE-T AIRPORT-T) |
(drive-truck TRUCK-T LOCATION-T LOCATION-T) |
(fly-airplane AIRPLANE-T AIRPORT-T AIRPORT-T)

GOAL-T → (at-truck TRUCK-T LOCATION-T) |
(at-obj OBJECT-T LOCATION-T) |
(inside-truck OBJECT-T TRUCK-T) |
(inside-airplane OBJECT-T AIRPLANE-T)
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Incremental and Non-incremental Learning of
Control Knowledge for Planning

1. Motivation

2. Incremental learning. hamlet

3. Learning by genetic programming. evock

4. Discussion
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Discussion

Related work

Linear: strips [Fikes et al., 1972], Rubik’s cube [Korf, 1985], prodigy/ebl [Minton,

1988], static [Etzioni, 1993], dynamic [Pérez and Etzioni, 1992], alpine [Knoblock,

1991], grasshoper [Leckie and Zukerman, 1998], lex [Mitchell et al., 1983],

acm [Langley, 1983], lebl [Tadepalli, 1989], dolphin [Zelle and Mooney, 1993],

experimenter [Carbonell and Gil, 1990], . . .

Nonlinear “classical”: soar [Laird et al., 1986], failsafe [Bhatnagar,

1992], observe [Wang, 1994], composer [Gratch and DeJong, 1992],

priar [Kambhampati, 1989], snlp+ebg [Kambhampati and Kedar, 1991],

snlp+ebl [Katukam and Kambhampati, 1994], ucpop+ebl [Qu and Kambhampati,

1995], quality [Pérez and Carbonell, 1994], SteppingStone [Ruby and Kibler,

1992], ucpop+foil [Estlin and Mooney, 1995], pipp [Upal and Elio, 1998],

prodigy/analogy [Veloso, 1994], DerSNLP [Ihrig and Kambhampati, 1996],

hamlet [Borrajo and Veloso, 1997], evock [Aler et al., 2002], ExEL [Reddy and

Tadepalli, 1999], . . .
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Discussion

More related work

Nonlinear “non classical”: rewrite rules [Ambite et al., 2000,
Upal and Elio, 2000], camel [Ilghami et al., 2002], htn
models [Garland et al., 2001], graphplan+ebl [Kambhampati,
2000], satplan+foil [Huang et al., 2000], generalized
policies [Khardon, 1999, Mart́ın and Geffner, 2000], hap [Vrakas et
al., 2003]

MDP models: reinforcement learning [Kaelbling et al., 1996],
Q-learning [Watkins and Dayan, 1992], temporal differences [Sutton,
1988, Tesauro, 1992], lope [Garćıa-Mart́ınez and Borrajo, 2000]
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Discussion

hamlet vs. evock

hamlet

knows about learning in planning

learning operators require right examples to modify candidate
hypotheses

incremental

planner and language dependent

evock

does not know it is doing learning in planning

learning operators do not require right examples to modify candidate
hypotheses

non-incremental

grammar dependent



31

Discussion

Incrementality

Incrementality allows

focusing on one example: juice extraction (ebl)

generating the next-best example

better approaching changes in target concept (life-long learning)

knowing what control rule is responsible for what
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focusing on one example: juice extraction (ebl)

generating the next-best example

better approaching changes in target concept (life-long learning)

knowing what control rule is responsible for what

Non-incrementality allows

having a global view of a distribution of examples

reducing the effect of noise or particular examples

better deciding what and how to generalize and specialize
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Discussion

Incrementality

Incrementality allows

focusing on one example: juice extraction (ebl)

generating the next-best example

better approaching changes in target concept (life-long learning)

knowing what control rule is responsible for what

Non-incrementality allows

having a global view of a distribution of examples

reducing the effect of noise or particular examples

better deciding what and how to generalize and specialize

They can be complementary
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Discussion

General discussion

Learning techniques should reflect somehow the way by which decisions
are made by the problem solver forward vs. backward

The knowledge about how to make a decision should be explicit in the
meta-state evaluation functions or cost functions

The base problem solver should be able to solve training problems are

easy or incompletely solved problems enough?

If quality is important, it should also provide at least two different-quality
solutions all solutions is the optimum

If a learning technique acquires individual control knowledge, the
decisions should be reproducible to be of use utility problem



33

Discussion

General discussion

Learning in problem solving also needs to worry about representativeness
of examples much bigger search spaces

It is difficult to add conditions on numbers, negative constrains (and
quantification) to the rules representation

Combining machine learning and humans is a very effective approach
mixed initiative, domain axioms, extra predicates, temporal formulae, . . .
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Discussion

On evaluation of learning in planning

Difficult task

What to measure?

Efficiency: time, solved problems

Quality: solution length (sequential, parallel), makespan, others

Combination

How to compare?

with or without prior knowledge

domain representation

set of problems

Against what?

different learners in different planners

knowledge-based planners

efficient state of the art planners
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Discussion

Still to be solved. Zenotravel

(control-rule select-airplane-for-zoom
(if (current-goal (at-object <object> <airport>))

(current-operator zoom)
(true-in-state (at-object <object> <airport1>))
(true-in-state (at-airplane <plane> <airport2>))
(cheapest-airplane-for-zoom <object> <plane>

<airport> <airport1>
<airport2>))

(then select bindings ((<obj> . <object>)
(<airplane> . <plane>))))
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Discussion

More recent and future work

Mixed initiative

Effects of knowledge representation

Effects of prior knowledge

Learning for multiple criteria

Learning for HTN+POP planners

Using numerical predicates on conditions of control rules

Active learning: on-line generation of appropriate training problems

Learning for planning and scheduling

Learning in more recent problem solvers
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