
Improved Rooftop Detection in Aerial Images with Machine
Learning

M.A. Maloof (maloof@cs.georgetown.edu)
Department of Computer Science, Georgetown University, Washington, DC 20057, USA

P. Langley (langley@isle.org)
Institute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto,
CA 94306, USA

T.O. Binford (binford@cs.stanford.edu)
Robotics Laboratory, Department of Computer Science, Stanford University, Stanford,
CA 94305, USA

R. Nevatia (nevatia@iris.usc.edu)
Institute for Robotics and Intelligent Systems, School of Engineering, University of Southern
California, Los Angeles, CA 90089, USA

S. Sage (sage@isle.org)
Institute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto,
CA 94306, USA

Abstract. In this paper, we examine the use of machine learning to improve a rooftop de-
tection process, one step in a vision system that recognizes buildings in overhead imagery.
We review the problem of analyzing aerial images and describe an existing system that detects
buildings in such images. We briefly detail four algorithms that we selected to improve rooftop
detection. The data sets were highly skewed and the cost of mistakes differed between the
classes, so we used ROC analysis to evaluate the methods under varying error costs. We
report three experiments designed to illuminate facets of applying machine learning to the
image analysis task. One investigated learning with all available images to determine the best
performing method. Another focused on within-image learning, in which we derived training
and testing data from the same image. A final experiment addressed between-image learning,
in which training and testing sets came from different images. Results suggest that useful
generalization occurred when training and testing on data derived from images differing in
location and in aspect. They demonstrate that under most conditions, naive Bayes exceeded
the accuracy of other methods and a handcrafted classifier, the solution currently used in the
building detection system.

Keywords: supervised learning, learning for computer vision, evaluation of algorithms, ap-
plications of learning.

1. Introduction

The number of images available to image analysts is growing rapidly, and
will soon outpace their ability to process them. Computational aids will be
required to filter this flood of images and to focus the analyst’s attention
on interesting events, but current image understanding systems are not yet

© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

mlj02.tex; 21/04/2002; 15:56; p.1

2 Maloof, Langley, Binford, Nevatia, and Sage

robust enough to support this process. Successful image understanding relies
on knowledge, and despite theoretical progress, implemented vision systems
still rely on heuristic methods and consequently remain fragile. Handcrafted
knowledge about when and how to use particular vision operations can give
acceptable results on some images but not on others.

In this paper, we explore the use of machine learning as a means for
improving knowledge used in the vision process, and thus for producing
more robust software. Recent applications of machine learning in business
and industry (Langley & Simon, 1995) hold useful lessons for applications in
image analysis. A key idea in applied machine learning involves building an
advisory system that recommends actions but gives final control to a human
user, with each decision generating a training case, gathered in an unobtrusive
way, for use in learning. This setting for knowledge acquisition is similar to
the scenario in which an image analyst interacts with a vision system, finding
some system analyses acceptable and others uninteresting or in error. The aim
of our research program is to embed machine learning into this interactive
process of image analysis.

This adaptive approach to computer vision promises to greatly reduce the
number of decisions that image analysts must make per picture, thus improv-
ing their ability to deal with a high flow of images. Moreover, the resulting
systems should adapt their knowledge to the preferences of individuals in
response to feedback from those users. The overall effect should be a new
class of systems for image analysis that reduces the workload on human an-
alysts and gives them more reliable results, thus speeding the image analysis
process.

In the sections that follow, we report progress on using machine learning
to improve decision making at one stage in an existing image understanding
system. We begin by explaining the task domain—identifying buildings in
aerial photographs—and then describe the vision system designed for this
task. Next, we review four well-known algorithms for supervised learning
that hold potential for improving the reliability of image analysis in this
domain. After this, we report the design of experiments to evaluate these
methods and the results of those studies. In closing, we discuss related and
future work.

2. Nature of the Image Analysis Task

Image analysts interpret aerial images of ground sites with an eye to unusual
activity or other interesting behavior. The images under scrutiny are usually
complex, involving many objects arranged in a variety of patterns. Over-
head images of Fort Hood, Texas, collected as part of the RADIUS project
(Firschein & Strat, 1997), are typical of a military base and include buildings

mlj02.tex; 21/04/2002; 15:56; p.2

Improved Rooftop Detection with Machine Learning 3

in a range of sizes and shapes, major and minor roadways, sidewalks, park-
ing lots, vehicles, and vegetation. A common task analysts face is to detect
change at a site as reflected in differences between two images, as in the
number of buildings, roads, and vehicles. This in turn requires the ability to
recognize examples from each class of interest. In this paper, we focus on the
performance task of identifying buildings in satellite photographs.

Aerial images can vary across a number of dimensions. The most ob-
vious factors concern viewing parameters, such as distance from the site
(which affects size and resolution) and viewing angle (which affects perspec-
tive and visible surfaces). But other variables also influence the nature of
the image, including the time of day (which affects contrast and shadows),
the time of year (which affects foliage), and the site itself (which deter-
mines the shapes of viewed objects). Taken together, these factors introduce
considerable variability into the images confronting analysts.

In turn, this variability can significantly complicate the task of recogniz-
ing object classes. Although a building or vehicle will appear different from
alternative perspectives and distances, the effects of such transformations are
reasonably well understood. But variations due to time of day, the season,
and the site are more serious. Shadows and foliage can hide edges and obscure
surfaces, and buildings at distinct sites may have quite different structures and
layouts. Such variations serve as mere distractions to a human image analyst,
yet they provide serious challenges to existing computer vision systems.

This suggests a natural task for machine learning: given aerial images
as training data, acquire knowledge that improves the reliability of such an
image analysis system. However, we cannot study this task in the abstract.
We must explore the effect of specific induction algorithms on particular
vision software. In the next two sections, we briefly review one such system
for image analysis and four learning methods that might give it more robust
behavior.

3. An Architecture for Image Analysis

Lin and Nevatia (1998) reported a computer vision package, called the Build-
ings Detection and Description System (BUDDS), for the analysis of ground
sites in aerial images. Like many programs for image understanding, their
system operates in a series of processing stages. Each step involves aggregat-
ing lower level features into higher level ones, eventually reaching hypotheses
about the locations and descriptions of buildings. We will consider these
stages in the order that they occur.

Starting at the pixel level, BUDDS uses an edge detector to group pixels
into edge elements, and then invokes a linear feature detector to group edge
elements into lines. Junctions and parallel lines are identified and combined

mlj02.tex; 21/04/2002; 15:56; p.3

4 Maloof, Langley, Binford, Nevatia, and Sage

to form three-sided structures, or “U-constructs.” The algorithm then groups
selected U-constructs and junctions to form parallelograms. Each such par-
allelogram constitutes a hypothesis about the position and orientation of the
roof for some building, so we may call this step rooftop generation.

After the system has completed the above aggregation process, a rooftop
selection stage evaluates each rooftop candidate to determine whether it has
sufficient evidence to be retained. The aim of this process is to remove can-
didates that do not correspond to actual buildings. Ideally, the system will
reject most spurious candidates at this point, although a final verification step
may still collapse duplicate or overlapping rooftops. This stage may also ex-
clude candidates if there is no evidence of three-dimensional structure, such
as shadows and walls.

Analysis of the system’s operation suggested that rooftop selection held
the most promise for improvement through machine learning, because this
stage must deal with many spurious rooftop candidates. This process takes
into account both local and global criteria. Local support comes from fea-
tures such as lines and corners that are close to a given parallelogram. Since
these suggest walls and shadows, they provide evidence that the candidate
corresponds to an actual building. Global criteria consider containment, over-
lap, and duplication of candidates. Using these evaluation criteria, the set
of rooftop candidates is reduced to a more manageable size. The individual
constraints applied in this process have a solid foundation in both theory and
practice.

The problem is that we have only heuristic knowledge about how to com-
bine these constraints. Moreover, such rules of thumb are currently crafted by
hand, and they do not fare well on images that vary in their global character-
istics, such as contrast and amount of shadow. However, methods of machine
learning, to which we now turn, may be able to induce better conditions
for selecting or rejecting candidate rooftops. If these acquired heuristics are
more accurate than the existing handcrafted solutions, they will improve the
reliability of the rooftop selection process.

4. A Review of Four Learning Techniques

We can formulate the task of acquiring rooftop selection heuristics in terms
of supervised learning. In this process, training cases of some concept are
labeled as to their class. In rooftop selection, only two classes exist—rooftop
and non-rooftop—which we will refer to as positive and negative examples
of the concept “rooftop.” Each instance consists of a number of attributes
and their associated values, along with a class label. These labeled instances
constitute training data that are provided as input to an inductive learning
routine, which generates concept descriptions designed to distinguish the

mlj02.tex; 21/04/2002; 15:56; p.4

Improved Rooftop Detection with Machine Learning 5

positive examples from the negative ones. Such knowledge structures state
the conditions under which the concept, in this case “rooftop”, is satisfied.

In a previous study (Maloof, Langley, Sage, & Binford, 1997), we evalu-
ated a variety of machine learning methods on the rooftop detection task and
selected the three that showed promise of achieving a balance between the
true positive and false positive rates: nearest neighbor, naive Bayes, and C5.0,
the commercial successor of C4.5. We also included the perceptron because,
as we will see, it is similar to the classifier currently used in BUDDS. These
methods use different representations, performance schemes, and learning
mechanisms for supervised concept learning, and exhibit different inductive
biases, meaning that each algorithm acquires certain concepts more easily
than others.

The nearest-neighbor method (e.g., Aha, Kibler, & Albert, 1991) uses an
instance-based representation of knowledge that simply retains training cases
in memory. This approach classifies new instances by finding the “nearest”
stored case, as measured by some distance metric, then predicting the class
associated with that case. For numeric attributes, a common metric (which we
use in our studies) is Euclidean distance. In this framework, learning involves
nothing more than storing each training instance, along with its associated
class. Although this method is quite simple and has a known sensitivity to
irrelevant attributes, in practice it performs well in many domains. Some
versions select the k closest cases and predict the majority class. For detection
tasks, such as ours, one typically sets k to an odd number to prevent ties. We
included both classifiers in our study.

The naive Bayesian classifier (e.g., John & Langley, 1995; Langley, Iba,
& Thompson, 1992) stores a probabilistic concept description for each class.
This description includes an estimate of the class probability and the esti-
mated conditional probabilities of each attribute value given the class. The
method classifies new instances by computing the posterior probability of
each class using Bayes’ rule, combining the stored probabilities by assuming
that the attributes are independent given the class, and predicting the class
with the highest posterior probability. Like nearest neighbor, naive Bayes has
known limitations, such as sensitivity to attribute correlations, but in practice,
it behaves well on many natural domains.

C5.0, the commercial successor of C4.5 (Quinlan, 1993), is a system that
uses training data to induce decision trees, which are n-ary trees with leaves
representing classes and with internal nodes corresponding to domain at-
tributes. An internal node for a given attribute has links to nodes in the next
level of the tree. Each link corresponds to a value or a range of values the
attribute takes.

The learning element of C5.0 builds a decision tree by selecting the at-
tribute with values that best separate the training examples into the proper
classes, by creating a node for that attribute, and by distributing the training

mlj02.tex; 21/04/2002; 15:56; p.5

6 Maloof, Langley, Binford, Nevatia, and Sage

examples into newly created leaf nodes based on the values of that attribute.
If all of the examples in a leaf node are of the same class, then construction
stops; otherwise, the procedure continues recursively. C5.0 selects attributes
by maximizing the gain ratio criterion, an information theoretic measure
of homogeneity. The learning element also applies a pruning algorithm to
induced trees as a post-processing step, which prevents over-fitting of the
training data.

To classify an instance, the decision procedure starts at the root of the tree
and follows the links as determined by the values that each attribute takes.
When it reaches a leaf node, the procedure returns the class label of the node
as the decision.

The continuous perceptron (e.g., Zurada, 1992) represents concepts using
a vector of weights, w, and a threshold, θ. Training a perceptron involves
finding the weight vector and threshold by using a gradient descent technique
to minimize the error between the desired output and the actual output of
the classifier. Although it is well-known that the training algorithm for a
discrete perceptron (i.e., with binary inputs) is guaranteed to converge to the
optimal solution for linearly separable patterns, this result does not hold for
the continuous version.

To classify an instance, which we represent as a vector of n real numbers,
x, we compute the output, o, using the formula:

o � ��� 1 if ∑n
i � 1 wixi � θ;� 1 otherwise.

(1)

For our application, the classifier predicts the positive class if the output is
�

1
and predicts the negative class otherwise. Although this classifier did not fare
well in previous studies (Maloof, Langley, Binford, & Sage, 1998; Maloof
et al., 1997), we included it here because it is very similar to the classification
method used in BUDDS, which we discuss next.

Currently, BUDDS uses a handcrafted linear classifier for rooftop detection
(Lin & Nevatia, 1998), which is equivalent to a continuous perceptron clas-
sifier (Zurada, 1992). Although we did not train this classifier as we did the
other methods, we included it in our evaluation for the purpose of comparison.
Recall that one motivation of this study was to use learning algorithms to
improve rooftop selection, so it was important to include this method as a
baseline. Henceforth, we will refer to the handcrafted linear classifier used in
BUDDS as the “BUDDS classifier.”

5. Generating, Representing, and Labeling Rooftop Candidates

We were interested in how well the various induction algorithms could learn
to classify rooftop candidates in aerial images. This required three things: a

mlj02.tex; 21/04/2002; 15:56; p.6

Improved Rooftop Detection with Machine Learning 7

Table I. Characteristics of the images and data sets.

Image Positive Negative

Number Location Image Size Aspect Examples Examples

1 A 2055 � 375 Nadir 71 2645

2 A 1803 � 429 Oblique 74 3349

3 B 670 � 645 Nadir 197 982

4 B 704 � 568 Oblique 238 1955

5 C 1322 � 642 Nadir 87 3722

6 C 1534 � 705 Oblique 114 4395

set of images that contain buildings, some means to generate and represent
plausible rooftops, and labels for each such candidate.

As our first step, we selected six overhead images of Fort Hood, Texas,
collected as part of the RADIUS program (Firschein & Strat, 1997). These
images were acquired in the visible range of the light spectrum at resolutions
between 1.2–1.7 pixels per meter, and quantized to 256 levels of intensity.
They covered three different areas but were taken from two different view-
points, one from a nadir aspect (i.e., directly overhead) and the other from an
oblique aspect, as summarized in Table I. These images contained concentra-
tions of buildings, to maximize the number of positive rooftop candidates.

In addition to differences in aspect and in location, these images also
differed in their dimensions and in the number, size, shape, and height of
the buildings therein. Some buildings were rectangular, both small and large,
but others were L-shaped or irregularly shaped with rooftops formed of mul-
tiple rectangular sections of differing heights. For some buildings, BUDDS

extracted rooftop candidates that aligned perfectly to actual rooftops, but it
also produced candidates that only partially covered actual rooftops and that
corresponded to clusters of cars, to sections of parking lots, to sidewalks and
lawns, and to sides and shadows of buildings.

Our aim was to improve rooftop selection in BUDDS, so we used this sys-
tem to process the images and generate candidate rooftops, thereby producing
six data sets, one for each image. Following Lin and Nevatia (1998), the data
sets described each rooftop candidate in terms of nine continuous features
that summarize the evidence gathered from the various levels of analysis.
For example, positive indications for the existence of a rooftop included evi-
dence for edges and corners, the degree to which a candidate’s opposing lines
are parallel, support for the existence of orthogonal trihedral vertices, and
evidence of shadows near the corners of the candidate. Negative evidence
included the existence of lines that cross the candidate, L-junctions adja-
cent to the candidate, similarly adjacent T-junctions, gaps in the candidate’s

mlj02.tex; 21/04/2002; 15:56; p.7

8 Maloof, Langley, Binford, Nevatia, and Sage

edges, and the degree to which enclosing lines failed to form a parallelogram.
L-junctions are a configuration of two linear features extracted from an image
that form an L-shape. Similarly, T-junctions are such that form a T-shape.

We should note that induction algorithms are often sensitive to the features
one uses to describe the data, and we make no claims that these nine attributes
are the best ones for recognizing rooftops in aerial images. However, because
our aim was to improve the robustness of BUDDS, we needed to use the
same features as Lin and Nevatia’s handcrafted classifier. Moreover, it seemed
unlikely that we could devise better features than the system’s authors had
developed during years of research.

The third problem, labeling the generated rooftop candidates, proved the
most challenging and the most interesting. BUDDS itself classifies each candi-
date, but since we were trying to improve on its ability, we could not use those
labels. Thus, we tried an approach in which an expert specified the vertices
of actual rooftops in the image, then we automatically labeled candidates
as positive or negative depending on the distance of their vertices from the
nearest actual rooftop’s corners. We also tried a second scheme that used the
number of candidate vertices that fell within a region surrounding the actual
rooftop. Unfortunately, upon inspection neither approach gave satisfactory
labeling results.

Analysis revealed the difficulties with using such relations to actual roof-
tops in the labeling process. One is that these schemes ignore information
about the candidate’s shape: A good rooftop should be a parallelogram; yet
nearness of vertices to a true rooftop is neither necessary nor sufficient for
this form. A second drawback is that they ignore other information contained
in the nine BUDDS attributes, such as shadows and crossing lines. The basic
problem is that such methods deal only with the two-dimensional space that
describes location within the image, rather than the nine-dimensional space
that we want the vision system to use when classifying a candidate.

Reluctantly, we concluded that manual labeling by a human was nec-
essary, but this task was daunting, as each image produced thousands of
candidate rooftops. To support the process, we implemented an interactive
labeling system, shown in Figure 1, that successively displays each extracted
rooftop to the user. The system draws each candidate over the portion of the
image from which it was extracted, then lets the user click buttons for ‘Roof’
or ‘Non-Roof’ to label the example. Table I also lists the number of positive
and negative examples extracted from each of the six images.1

The visual interface itself incorporates a simple learning mechanism—
nearest neighbor—designed to improve the labeling process. As the system
obtains feedback from the user about positive and negative examples, it di-

1 Oblique images yielded more negative examples because in these, a building’s walls were
visible. Walls produced parallel, linear features, which BUDDS grouped into parallelograms.
During labeling, we designated these constructs as negative.

mlj02.tex; 21/04/2002; 15:56; p.8

Improved Rooftop Detection with Machine Learning 9

Figure 1. Visualization interface for labeling rooftop candidates. The system presents candi-
dates to a user who labels them by clicking either the ‘Roof’ or ‘Non-Roof’ button. It also
incorporates a simple learning algorithm to provide feedback to the user about the statistical
properties of a candidate based on previously labeled examples.

vides unlabeled candidates into three classes: likely rooftops, unlikely roof-
tops, and unknown. The interface displays likely rooftops using green rect-
angles, unlikely rooftops as red rectangles, and unknown candidates as blue
rectangles. The system includes a sensitivity parameter that affects how cer-
tain the system must be before it proposes a label. After displaying a rooftop,
the user either confirms or contradicts the system’s prediction by clicking
either the ‘Roof’ or ‘Non-Roof’ button. The simple learning mechanism then
uses this information to improve subsequent predictions of candidate labels.

Our intent was that as the interface gained experience with the user’s
labels, it would display fewer and fewer candidates about which it was uncer-
tain, and thus speed up the later stages of interaction. Informal studies sug-
gested that the system achieves this aim: By the end of the labeling session,
the user typically confirmed nearly all of the interface’s recommendations.
However, because we were concerned that our use of nearest neighbor might
bias the labeling process in favor of this algorithm, during later studies, we
generated the data used in the experimental sections—Sections 6 and 8—
by setting the sensitivity parameter so the system presented all candidates as
uncertain. Even handicapped in this manner, it took the user only about five
hours to label the 17,829 roof candidates extracted from the six images. This
comes to under one second per candidate, which is quite efficient.

The consistency of labeling is an important issue, not just for a given
expert, but also for different experts. Incorporating a learning method into
the labeling system was an attempt to improve consistency for a particular in-
dividual. However, more interesting and challenging were the disagreements

mlj02.tex; 21/04/2002; 15:56; p.9

10 Maloof, Langley, Binford, Nevatia, and Sage

between experts. For instance, one argued that a parallelogram delineating a
parking lot should be labeled as a rooftop because it was well-shaped, and
BUDDS would remove it in later stages of processing when the system failed
to find evidence of walls and shadows. Another argued to designate a mis-
shapen parallelogram as a rooftop because it was the only rooftop candidate
present in the data set for a particular building.

We have investigated disagreements among experts when labeling rooftops
and the effect these have on learning and performance (Ali, Langley, Maloof,
Sage, & Binford, 1998). In spite of disagreements on non-rooftops of 31%
between experts and of 14% between labeling sessions for one expert, naive
Bayesian classifiers built from these data sets performed almost identically.
Moreover, these performances were notably better than that of the BUDDS

classifier. This implies that at this stage in our work, such disagreements have
little effect. However, if it becomes a greater problem in the future, then one
solution is to train classifiers with each expert’s labeled data and use ensemble
methods to combine the outputs into a single decision. Such an approach may
be impractical given the amount of data we have, so we could also use a
voting scheme to either remove or weight the rooftop candidates on which
they disagree.

In summary, what began as a simple task of labeling visual data led us to
some of the more fascinating issues in our work. To incorporate supervised
concept learning into vision systems that can generate thousands of candi-
dates per image, we must develop methods to reduce the burden of labeling
these data. In future work, we intend to measure more carefully the ability of
our adaptive labeling system to speed this process. We also plan to explore
extensions that use the learned classifier to order candidate rooftops (showing
the least certain ones first) and even to filter candidates before they are passed
on to the user (automatically labeling the most confident ones). Techniques
such as selective sampling (Freund, Seung, Shamir, & Tishby, 1997), uncer-
tainty sampling (Lewis & Catlett, 1994), or Miller and Uyar’s method for
learning from both labeled and unlabeled training data (Miller & Uyar, 1997)
should prove useful toward these ends.

6. Experiment I: Evaluating the Methods Traditionally

After constructing a labeled data set and identifying four learning algorithms,
we evaluated the methods empirically to determine which might outperform
the BUDDS classifier. To accomplish this, we randomly split the labeled roof-
top data into training (60%) and testing (40%) sets. We then ran each al-
gorithm by training using the examples in the training set, by testing the
resulting classifier using the examples in the testing set, and by computing the
accuracy, the true positive rate, and the false positive rate. We conducted ten

mlj02.tex; 21/04/2002; 15:56; p.10

Improved Rooftop Detection with Machine Learning 11

Table II. Results for the experiment using all of the image data. Mea-
sures are accuracy, true positive (TP) rate, false positive (FP) rate with
95% confidence intervals. Italics type shows the best measure in each
column.

Method Accuracy TP Rate FP Rate

C5.0 0.963 � 0.003 0.23 � 0.022 0.0034 � 0.0011

k-NN (k = 17) 0.961 � 0.001 0.19 � 0.015 0.0037 � 0.0003

k-NN (k = 11) 0.960 � 0.001 0.21 � 0.017 0.0056 � 0.0006

k-NN (k = 5) 0.957 � 0.001 0.23 � 0.010 0.0097 � 0.0009

Perceptron 0.957 � 0.001 0.02 � 0.011 0.0001 � 0.0001

BUDDS Classifier 0.917 � 0.001 0.54 � 0.018 0.0657 � 0.0008

Naive Bayes 0.908 � 0.003 0.56 � 0.008 0.0761 � 0.0036

of these learning runs, averaging the performance metrics, which are shown
in Table II. We ran k-NN for k � 3 	 5 	�
�
�
�	 19, but for the sake of brevity, we
present only the three best results for this method. We report these omitted
measures elsewhere (Maloof et al., 1998).

An analysis of variance (Keppel, Saufley, & Tokunaga, 1992) indicated
that these results were statistically significant at p
�
 01. We also used Dun-
can’s test (Walpole, Myers, & Myers, 1998) to identify statistically significant
subgroups of performance, also at p
�
 01. The means of the perceptron
and of k-NN, for k � 5, were not significantly different. Further, the means
of k-NN, for k � 7 	 9 	�
�
�
�	 19, were not significantly different. However, the
differences between naive Bayes and the BUDDS classifier and between C5.0
and k-NN, for k � 17, were statistically significant.

Using accuracy as our measure of performance, we concluded that C5.0
outperformed the BUDDS classifier by roughly five percent. However, looking
at the false positive rate, we see that much of C5.0’s superiority in perfor-
mance was due to its success in identifying non-rooftops and that it was only
fair at detecting rooftops, as the true positive rate indicates.

Since we were attempting to develop a better rooftop detector, we con-
sidered choosing the method that maximized the true positive rate, but that
method, naive Bayes, while performing significantly better in the statistical
sense, did not significantly eclipse the original BUDDS classifier in any other
sense. As we will see in the following sections, the dissatisfying results that
we obtained in this experiment were not due to a failing of the learning meth-
ods. Rather, they were due to a failing in our initial choice of an evaluation
methodology.

mlj02.tex; 21/04/2002; 15:56; p.11

12 Maloof, Langley, Binford, Nevatia, and Sage

7. Cost-Sensitive Learning and Skewed Data

Two aspects of the rooftop selection task influenced our subsequent approach
to implementation and evaluation. First, BUDDS works in a bottom-up man-
ner, so if the system discards a rooftop, it cannot retrieve it later. Conse-
quently, errors on the rooftop class (false negatives) are more expensive than
errors on the non-rooftop class (false positives), so it is better to retain a false
positive than to discard a false negative. The system has the potential for
discarding false positives in later stages of processing when it can draw upon
accumulated evidence, such as the existence of walls and shadows. However,
since false negatives cannot be recovered, we need to minimize errors on the
rooftop class.

Second, we have a severely skewed data set, with training examples dis-
tributed non-uniformly across classes (781 rooftops vs. 17,048 non-rooftops).
Given such skewed data, most induction algorithms have difficulty learning
to predict the minority class. Moreover, we have established that errors on our
minority class (rooftops) are most expensive, and the extreme skew only in-
creases such errors. This interaction between a skewed class distribution and
unequal error costs occurs in many computer vision applications, in which
a vision system generates thousands of candidates but only a handful cor-
respond to objects of interest. It also holds in many other applications of
machine learning, such as fraud detection (Fawcett & Provost, 1997), dis-
course analysis (Soderland & Lehnert, 1994), and telecommunications risk
management (Ezawa, Singh, & Norton, 1996).

These issues raise two challenges. First, they highlight the need to achieve
higher accuracy on the minority class, whether through modified learning al-
gorithms or altered distributions. Second, they require an experimental meth-
odology that lets us compare different methods on tasks like rooftop detec-
tion, in which the classes are skewed and errors have different costs. In the
remainder of this section, we further clarify the nature of the problem, after
which we describe our cost-sensitive learning methods and an approach to
experimental evaluation.

7.1. FAVORITISM TOWARD THE MAJORITY CLASS

In Section 6 and in a previous study (Maloof et al., 1997), we evaluated
several algorithms without taking into account the cost of classification er-
rors and obtained confusing experimental results. Some methods, like the
standard error-driven algorithm for revising perceptron weights, learned to
always predict the majority class. The naive Bayesian classifier found a more
comfortable trade-off between the true positive and false positive rates, but
still favored the majority class. For data sets that are skewed, an inductive
method that learns to predict the majority class will often have a higher

mlj02.tex; 21/04/2002; 15:56; p.12

Improved Rooftop Detection with Machine Learning 13

overall accuracy than a method that finds a balance between the true positive
and false positive rates.2 Indeed, always predicting the majority class for our
problem yields an accuracy of 0.95, which makes it a misleading measure of
performance (see also Provost, Fawcett, & Kohavi, 1998).

This bias toward the majority class only causes difficulty when we care
more about errors on the minority class. For the rooftop domain, if the error
costs for the two classes were the same, then we would not care on which
class we made errors, provided we minimized the total number of mistakes.
Nor would there be any problem if mistakes on the majority class were more
expensive, since most learning methods are biased toward minimizing such
errors anyway. However, if the class distribution runs counter to the relative
cost of mistakes, as in our domain, then we must take actions both to improve
accuracy on the minority class and to refine our performance measure.

Breiman, Friedman, Olshen, and Stone (1984) noted the close relation
between the distribution of classes and the relative cost of errors. In particular,
they pointed out that one can mitigate the bias against the minority class by
duplicating examples of that class in the training data. This also helps explain
why most induction methods give more weight to accuracy on the majority
class, since skewed training data implicitly places more weight on errors for
that class. In response, several researchers have explored approaches that alter
the distribution of training data in various ways, including use of weights to
bias the performance element (Cardie & Howe, 1997), removing unimportant
examples from the majority class (Kubat & Matwin, 1997), and “boosting”
the examples in the under-represented class (Freund & Schapire, 1996). How-
ever, as we will see shortly, one can also modify the algorithms themselves to
more directly respond to error costs.

7.2. COST-SENSITIVE LEARNING METHODS

Empirical comparisons of machine learning algorithms seldom focus on the
cost of classification errors, possibly because most learning methods do not
provide ways to take such costs into account. Happily, some researchers have
explored variations on standard algorithms that effectively bias the method
in favor of one class over others. For example, Lewis and Catlett (1994)
introduced a loss ratio into C4.5 (Quinlan, 1993) to bias it toward under-
represented classes. Pazzani and his colleagues have also done some prelim-
inary work along these lines, which they describe as addressing the costs of
different error types (Pazzani et al., 1994). Their method finds the minimum-
cost classifier for a variety of problems using a set of hypothetical error costs.
Bradley (1997) presented results from an empirical evaluation of algorithms

2 Covering algorithms, like AQ15 (Michalski, Mozetic, Hong, & Lavrac, 1986) or CN2
(Clark & Niblett, 1989), may be less susceptible to skewed data sets, but this is highly
dependent on their rule selection criteria.

mlj02.tex; 21/04/2002; 15:56; p.13

14 Maloof, Langley, Binford, Nevatia, and Sage

that take into account the cost of classification error, whereas Turney (1995)
addressed the cost of tests to measure attributes. Domingos (1999) recently
proposed a meta-learning approach for making classifiers cost-sensitive that
involves relabeling training examples so their distribution is consistent with
the cost of errors.

If we have n classes, then we can specify a cost matrix C, where ci j , for
i 	 j � 1 	�
�
�
�	 n, is the cost incurred by mistakenly assigning the class label i to
an instance from the class j. If x is an example, then the overall risk (Duda &
Hart, 1973) of a classifier is simply

n

∑
i � 1

n

∑
j � 1

P � j � x � ci j 	 (2)

where P � j � x � is the conditional probability that the example x will be labeled
j. Naturally, we want to build a classifier that minimizes our risk of making
mistakes.

In practice, it is difficult to find the optimal set of boundaries that partition
the set of examples in a way that minimizes the overall risk. For example,
there is no guarantee that the labels of the training examples will coincide
with the true cost of errors (Domingos, 1999; Maloof et al., 1998). Duda and
Hart (1973) suggested that we can take error costs into account by adjusting
a class’s prior probability, but for some methods, it is not clear how to use
altered priors to influence the process of concept formation. As we mentioned
previously, we can indirectly change a class’s prior probability by duplicat-
ing or removing examples from the training set (Breiman et al., 1984). But
as Domingos (1999) observed, this stratification method is not without its
problems. If we remove examples, then we have less data for training, and if
we duplicate examples, then we increase the time required for training.

These difficulties have lead several researchers to devise heuristic ap-
proaches for constructing cost-sensitive classifiers. For example, Pazzani and
his colleagues (Pazzani et al., 1994) used a post-processing step to select
and order rules in a decision list to minimize costs. Bradley (1997), for the
perceptron, simulates different misclassification costs by using a heuristic to
vary the decision threshold.

When implementing cost-sensitive learning methods, the basic idea is to
change the way the algorithm treats instances from the more expensive class
relative to the other instances, either during the learning process or at the time
of testing. We want to incorporate a heuristic into the algorithms so that we
can bias them toward making mistakes on the less costly class rather than on
the more expensive class.

Recall that naive Bayes predicts the class with the highest posterior prob-
ability as computed using Bayes’ rule, so in our implementation, we simply
computed the risk for each class, selecting the one with the least risk. That is,
for an example, x, we computed the expected risk, R � i � x � , for the class i using

mlj02.tex; 21/04/2002; 15:56; p.14

Improved Rooftop Detection with Machine Learning 15

the formula:
R � i � x � � ∑

j
P � j � x � ci j 	 (3)

where P � j � x � is the posterior probability of the jth class given the example.
The cost-sensitive version of naive Bayes predicts the class i with the least
expected risk.

C5.0 uses a method similar to that in CART (Breiman et al., 1984) to
grow decision trees in a way that minimizes error cost. C5.0 first estimates
the prior probability of each class from the training set. We have already
established the link between the cost of errors and the prior probabilities of
the classes. C5.0 then uses the estimated priors and the cost matrix to compute
altered priors, which are used to bias the selection of attributes during the tree
growing process.

For the remaining algorithms—the perceptron and nearest neighbor class-
ifiers—we chose to incorporate a cost parameter into the performance ele-
ment of the algorithms, rather than the learning element, so we could vary the
decision threshold, thus simulating different costs of misclassification. For
each class, we defined a parameter, τ, in the range � 0
 0 	 1
 0 � to indicate the
cost of making a mistake on the class. Zero indicates that errors cost nothing,
and one means that errors are maximally expensive.

Nearest neighbor, as normally used, predicts the class of the example that
is closest to the query. Any cost heuristic should have the effect of moving
the query point closer to the closest example of the more expensive class, and
the magnitude of this change should be proportional to the magnitude of the
cost parameter. Therefore, we computed the altered distance, δ j, for the class
j using the formula:

δ j
� dE � x 	 x j � � τ j dE � x 	 x j ��	 (4)

where x j is the closest neighbor from class j to the query point, and dE � x 	 y � is
the Euclidean distance function. The cost-sensitive version of nearest neigh-
bor returns as its prediction the class label of the closest instance as measured
by the altered distance. This modification also works for k-nearest neighbors,
which considers the k closest neighbors as measured by the altered distance
when classifying unknown instances.

Since the perceptron is a linear discriminant function, we want the cost
heuristic to adjust the threshold so the hyperplane of discrimination is farther
from the hypothetical region of examples of the more expensive class, thus
enlarging the decision region of that class. The degree to which the algo-
rithm adjusts the threshold is again dependent on the magnitude of the cost
parameter. The adjusted threshold θ � is computed by:

θ � � θ � 2

∑
j � 1

sgn � j � τ jσ j 	 (5)

mlj02.tex; 21/04/2002; 15:56; p.15

16 Maloof, Langley, Binford, Nevatia, and Sage

where θ is the original threshold for the linear discriminant function, sgn � j �
returns

�
1 for the positive class and � 1 for the negative class, and σ j is

the maximum value the weighted sum can take for the jth class. The cost-
sensitive version of the perceptron predicts the positive class if the weighted
sum of an instance’s attributes surpasses the adjusted threshold θ � ; otherwise,
it predicts the negative class.

Finally, because our modifications focused on the performance elements
rather than on the learning algorithms, we made similar changes to the BUDDS

classifier. Like the perceptron, it is a linear discriminant function, so we made
the same modifications to the BUDDS classifier that we made to the perceptron
algorithm.

7.3. ROC ANALYSIS FOR EVALUATING PERFORMANCE

Our next challenge was to identify an experimental methodology that would
let us compare the behavior of our cost-sensitive learning methods on the
rooftop data. We have already seen that comparisons based on overall accu-
racy are not sufficient for domains that involve non-uniform costs or skewed
distributions. Rather, we must separately measure accuracy on both classes,
in terms of false positives and false negatives. Given information about the
relative costs of errors, say, from conversations with domain experts or from
a domain analysis, we could then compute a weighted accuracy for each al-
gorithm that takes cost into account (Fawcett & Provost, 1997; Pazzani et al.,
1994).

However, in this case, we had no access to image analysts or enough
information about the results of their interpretations to determine the actual
costs for the domain. In such situations, rather than aiming for a single perfor-
mance measure, as typically done in machine learning experiments, a natural
solution is to evaluate each learning method over a range of cost settings.
ROC (Receiver Operating Characteristic) analysis (Swets, 1988) provides a
framework for carrying out such comparisons. The basic idea is to systemati-
cally vary some aspect of the situation, such as the misclassification costs, the
class distribution, or the decision threshold, apply the classifier to test cases,
and plot the false positive rate against the true positive rate for each situation.
(See Appendix A for more detail.) Although researchers have used such ROC
curves in signal detection and psychophysics for decades (Egan, 1975; Green
& Swets, 1974), this technique has only recently begun to filter into machine
learning research (e.g., Bradley, 1997; Ezawa et al., 1996; Maloof et al., 1997;
Provost & Fawcett, 1997; Provost et al., 1998).

Figure 2 shows a hypothetical ROC curve generated by varying the de-
cision threshold of a cost-sensitive learning algorithm. The lower left corner
of the figure, point (0, 0), represents the situation in which mistakes on the
negative class are maximally expensive (i.e., c � � 0
 0 and c � � 1
 0). Con-

mlj02.tex; 21/04/2002; 15:56; p.16

Improved Rooftop Detection with Machine Learning 17

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Figure 2. A hypothetical Receiver Operating Characteristic (ROC) curve.

versely, the upper right corner of the ROC graph, point (1, 1), represents the
situation in which mistakes on the positive class are maximally expensive
(i.e., c � � 1
 0 and c � � 0
 0). By varying over the range of cost parameters
and plotting the classifier’s true positive and false positive rates, we produce
a series of points that represents the algorithm’s accuracy trade-off, which is
unconfounded by inductive bias, unequal error costs, and skewed data sets.
The point � 0 	 1 � is where classification is perfect, with a false positive rate
of zero and a true positive rate of one, so we want ROC curves that “push”
toward this corner.

Traditional ROC analysis uses area under the curve as the preferred mea-
sure of performance, with curves that cover larger areas generally viewed
as better (Hanley & McNeil, 1982; Swets, 1988). Given the skewed nature
of the rooftop data, and the different but imprecise costs of errors on the
two classes, we decided to use area under the ROC curve as the dependent
variable in our experimental studies. This measure is problematic when two
curves have similar areas but are dissimilar and asymmetric, and thus occupy
different regions of the ROC space. In such cases, other types of analysis
are more useful (e.g., Provost & Fawcett, 1997), but area under the curve
appears to be most appropriate when curves have similar shapes and when
one curve dominates the other. As we will see, this relation typically holds
for our cost-sensitive algorithms in the rooftop detection domain.

8. Experiment II: Cost-Sensitive Algorithms and ROC Analysis

With this new perspective, we revisited the rooftop detection task by con-
ducting an experiment using the cost-sensitive versions of C5.0, naive Bayes,
k-NN, the perceptron, and the BUDDS classifier. As before, we used all of the
rooftop candidates generated from the six Fort Hood images, since we wanted

mlj02.tex; 21/04/2002; 15:56; p.17

18 Maloof, Langley, Binford, Nevatia, and Sage

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Naive Bayes
k-NN, k = 11

BUDDS Classifier
Perceptron

C5.0

Figure 3. ROC curve for the experiment using all available image data. We ran each method
over a range of costs using a training set (60%) and a testing set (40%) and averaged the true
positive and false positive rates over ten runs. C5.0 produced the curve with the largest area,
but all of the other learning methods yielded curves larger in area than that of the BUDDS

classifier.

to replicate our previous experiment reported in Section 6, and trained the
induction methods on data (rooftop candidates) separate from those used to
test the learned classifiers.

Combining the rooftop candidates from all six images yielded 17,829
instances, 781 labeled positive and 17,048 labeled negative. We ran each
algorithm ten times over a range of costs, randomly splitting the data each
run into training (60%) and testing (40%) sets. Because the BUDDS classifier
was hand-configured, it had no training phase, so we applied it directly to the
instances in the test set.

Since our domain involved only two classes and costs are relative (i.e.,
τ � � 0
 0 and τ � � 0
 5 is equivalent to τ � � 0
 25 and τ � � 0
 75), we varied
the cost parameter for only one class at a time and fixed the other at zero.
Furthermore, because cost settings differed between algorithms and between
data sets due to differences in inductive bias and in the distribution of exam-
ples, respectively, we empirically determined for each algorithm the settings
required to yield the desired ROC curve. (See Appendix A for more details.)
For each of the ten runs, we used the trapezoid rule to approximate the area
under each ROC curve. Upon completing the runs, we averaged the ten areas
for each method and computed 95% confidence intervals. We also averaged
the true positive and false positive rates for each method over the ten runs to
produce an ROC curve.

Figure 3 shows the resulting ROC curves, which plot the averaged true
positive and false positive rates, whereas Table III gives the average approx-
imate area under these curves. To determine if these results were significant,
we conducted an analysis using LabMRMC (Dorfman, Berbaum, & Metz,
1992). The method uses the Jackknife method (Hinkley, 1983) on case ratings

mlj02.tex; 21/04/2002; 15:56; p.18

Improved Rooftop Detection with Machine Learning 19

Table III. Results for the experiment using all
of the image data. We split the data into training
(60%) and test (40%) sets and ran each method
over a range of costs. We then computed the
average area under the ROC curve and 95%
confidence intervals over ten runs.

Classifier Area under ROC Curve

C5.0 0.867 � 0.006

Naive Bayes 0.854 � 0.009

Perceptron 0.853 � 0.010

k-NN (k = 11) 0.847 � 0.006

BUDDS Classifier 0.802 � 0.014

to account for case-sample variance and then applies traditional analysis of
variance (ANOVA) to determine significance. This analysis showed that the
means of C5.0, naive Bayes, the BUDDS classifier, the perceptron, and k-NN,
for k � 11, were significantly different (p
�
 001).

C5.0 performed the best overall, producing a curve with area 0.867. Naive
Bayes and the perceptron, while not performing quite as well as C5.0, pro-
duced curves with areas roughly equal to 0.85. Of the k-NN classifiers, k � 11
performed the best with an area of 0.847. Finally, the BUDDS classifier pro-
duced a curve of area 0.802. The important result from this experiment is
not whether C5.0 performed better than naive Bayes. Indeed, the important
result is that all of the learning methods outperformed the handcrafted BUDDS

classifier, which supports our research hypothesis: that learning methods can
outperform carefully handcrafted heuristics.

In practice, image analysts will not evaluate a classifier’s performance
using area under the ROC curve, but will have specific error costs in mind,
even if they cannot state them formally. We have used ROC curves because
we do not know these costs in advance, but we can inspect behavior of the
various classifiers at different points on these curves to give further insight
into how much the learned classifiers are likely to aid analysts during actual
use.

For example, consider the behavior of C5.0 when it achieves a true posi-
tive rate of 0.84 and a false positive rate of 0.26. For the same true positive
rate, the BUDDS classifier obtained a false positive rate of 0.5. This means
that for this true positive rate, C5.0 reduced the false positive rate by about
half. Hence, for the images we considered, the C5.0 classifier would have
rejected 4,432 more non-rooftops than the BUDDS classifier. Similarly, by
fixing the false positive rate, C5.0 improved the true positive rate by 0.1 over
the BUDDS classifier. In this case, the C5.0 classifier would have found 78

mlj02.tex; 21/04/2002; 15:56; p.19

20 Maloof, Langley, Binford, Nevatia, and Sage

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Naive Bayes
k-NN, k = 11

BUDDS Classifier
Perceptron

C5.0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Naive Bayes
k-NN, k = 11

BUDDS Classifier
Perceptron

C5.0

Figure 4. ROC curves for two images from within-image experiments. We ran each method by
training and testing using data derived from the same image over a range of misclassification
costs. We conducted ten such runs and plotted the average true positive and false positive rates.
Left: Image 1, a nadir-view image. Right: Image 2, an oblique-view image.

more rooftops than the BUDDS classifier. Furthermore, if we were willing to
tolerate more false positives in an effort to increase the true positive rate, then
we could select points higher on C5.0’s ROC curve where the differences in
performance between C5.0 and the BUDDS classifier are even greater (e.g.,
the points at which the false positive rate is 0.4).

8.1. WITHIN-IMAGE LEARNING

We also examined how the various methods behaved given within-image
learning, that is, when generalizing to test cases taken from the same image
on which we trained them. Our research hypothesis was that the learned clas-
sifiers would be more accurate over a range of misclassification costs than the
handcrafted linear classifier. Because our measure of performance was area
under the ROC curve, this translates into a prediction that the ROC curves
of the learned rooftop classifiers would have larger areas than those of the
BUDDS classifier.

For each image and method, we varied the error costs and measured the
resulting true positive and false positive rates for ten runs. Each run involved
partitioning the data set randomly into training (60%) and test (40%) sets,
running the learning algorithms on the instances in the training set, and eval-
uating the resulting concept descriptions using the data in the test set. For
each cost setting and each classifier, we plotted the average false positive rate
against the average true positive rate over the ten runs.

Figure 4 presents the ROC curves for Images 1 and 2, and for these im-
ages, naive Bayes produced the best results. The areas under these curves,
which we approximated using the trapezoid rule, appear in Table IV. Rather
than present curves for the remaining four images, we report the areas under

mlj02.tex; 21/04/2002; 15:56; p.20

Improved Rooftop Detection with Machine Learning 21

Table IV. Results for within-image experiments for Images 1
and 2. Approximate areas under the ROC curve appear with
95% confidence intervals.

Approximate Area under ROC Curve

Classifier Image 1 Image 2

C5.0 0.913 � 0.005 0.882 � 0.008

Naive Bayes 0.952 � 0.010 0.918 � 0.007

Perceptron 0.923 � 0.014 0.874 � 0.012

k-NN, k = 11 0.941 � 0.009 0.858 � 0.014

BUDDS Classifier 0.846 � 0.036 0.915 � 0.009

Table V. Results for within-image experiments for Images 3–6. Approximate areas
under the ROC curve appear with 95% confidence intervals.

Approximate Area under ROC Curve

Classifier Image 3 Image 4 Image 5 Image 6

C5.0 0.894 � 0.004 0.834 � 0.008 0.861 � 0.018 0.837 � 0.009

Naive Bayes 0.838 � 0.004 0.823 � 0.012 0.876 � 0.007 0.852 � 0.007

Perceptron 0.858 � 0.011 0.807 � 0.023 0.860 � 0.020 0.743 � 0.028

k-NN, k = 11 0.846 � 0.005 0.828 � 0.010 0.830 � 0.009 0.783 � 0.009

BUDDS Classifier 0.750 � 0.007 0.771 � 0.012 0.829 � 0.022 0.850 � 0.007

each ROC curve in Table V. For Images 3 and 4, C5.0 produced curves with
areas greater than those of the other methods. For Images 5 and 6, naive
Bayes again produced curves with the greatest area, although the differences
between naive Bayes and the BUDDS classifier for Images 2 and 6 were not
notable. Moreover, with the exception of these two images, all of the learning
methods outperformed the handcrafted classifier, and this outcome generally
supports our research hypothesis.

8.2. BETWEEN-IMAGE LEARNING

We geared our next set of experiments more toward the goals of image anal-
ysis. Recall that our motivating problem is the large number of images that
the analyst must process. In order to alleviate this burden, we want to apply
knowledge learned from some images to many other images. But we have
already noted that several dimensions of variation pose problems for transfer-
ring such learned knowledge to new images. For example, one viewpoint of
a given site can differ from other viewpoints of the same site in orientation or

mlj02.tex; 21/04/2002; 15:56; p.21

22 Maloof, Langley, Binford, Nevatia, and Sage

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Naive Bayes
k-NN, k = 11

BUDDS Classifier
Perceptron

C5.0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Naive Bayes
k-NN, k = 11

BUDDS Classifier
Perceptron

C5.0

Figure 5. ROC curves for experiments that tested generalization over aspect. Left: For each
location, we trained each method on the oblique image and tested the resulting concept de-
scriptions on the nadir image. We plotted the average true positive and false positive rates.
Right: We followed a similar methodology, except that we trained the methods on the nadir
images and tested on the oblique images.

Table VI. Results for between-image experiment in which we tested generalization over
aspect. The labels ‘Nadir’ and ‘Oblique’ indicate the testing condition. We derived analo-
gous results for the within-image experiments by averaging the results for each condition.
Approximate areas appear with 95% confidence intervals.

Aspect Experiment Average Within Image

Classifier Nadir Oblique Nadir Oblique

C5.0 0.837 � 0.016 0.806 � 0.015 0.889 � 0.008 0.851 � 0.007

Naive Bayes 0.839 � 0.020 0.858 � 0.028 0.889 � 0.012 0.865 � 0.010

Perceptron 0.828 � 0.026 0.835 � 0.019 0.880 � 0.011 0.808 � 0.017

k-NN, k = 11 0.856 � 0.028 0.814 � 0.017 0.872 � 0.012 0.823 � 0.009

BUDDS Classifier 0.801 � 0.029 0.841 � 0.032 0.809 � 0.016 0.846 � 0.014

in angle from the perpendicular. Images taken at different times and images
of different areas present similar issues.

We designed experiments to let us better understand how the knowledge
learned from one image generalizes to other images that differ along such
dimensions. Our hypothesis here was a refined version of the previous one:
Classifiers learned from one set of images would be more accurate on unseen
images than handcrafted classifiers. However, we also expected that between-
image learning would give lower accuracy than the within-image situation,
since differences across images would make generalization more difficult.

mlj02.tex; 21/04/2002; 15:56; p.22

Improved Rooftop Detection with Machine Learning 23

8.2.1. Generalizing over Aspect
One experiment focused on how the methods generalize over aspect. Recall
from Table I that we had images from two aspects (i.e., nadir and oblique)
and from three locations. This let us train the learning algorithms on an image
from one aspect and test on an image from another aspect but from the same
location. As an example, for the nadir aspect, we chose Image 1 and then
tested on Image 2, which is an oblique image of the same location. We ran the
algorithms in this manner using the images from each location, while varying
their cost parameters and measuring their true positive and false positive rates.
We then averaged these measures across the three locations and plotted the
results as ROC curves, as shown in Figure 5. The areas under these curves
and their 95% confidence intervals appear in Table VI.

One obvious conclusion is that the nadir images appear to pose an eas-
ier problem than the oblique images, since the curves for testing on nadir
candidates are generally higher than those for testing on data from oblique
images. For example, Table VI shows that C5.0 generated a curve with an
area of 0.837 for the nadir images, but produced a curve with an area of 0.806
for the oblique images. The other two methods show a similar degradation
in performance when generalizing from nadir to oblique images rather than
from oblique to nadir images. The exception is naive Bayes, which achieved
better performance when generalizing to oblique images.

Upon comparing the behavior of different methods, we find that for oblique
to nadir generalization, k-NN, for k � 11, with an area under the ROC curve
of 0.856, performed better than the BUDDS classifier, with an area of 0.801.
In this experimental condition, all of the learning methods outperformed the
BUDDS classifier. For nadir to oblique generalization, naive Bayes performed
slightly better than the BUDDS classifier, which produced areas of 0.858 and
0.841, respectively. In this experimental condition, BUDDS outperformed three
of the learning methods: the perceptron, k-NN, and C5.0.

8.2.2. Generalizing over Location
A second experiment examined generalization over location. To this end, we
trained the learning methods on pairs of images from one aspect and tested on
the third image from the same aspect. As an example, for the nadir images,
one of the three learning runs involved training on rooftop candidates from
Images 1 and 3, then testing on candidates from Image 5. We then ran each
of the algorithms across a range of costs, measuring the false positive and
true positive rates. We plotted the averages of these measures across all three
learning runs for one aspect in an ROC curve, as shown in Figure 6.

In this context, we again see evidence that the oblique images presented
a more difficult recognition task than the nadir aspect, since areas for the
oblique images are less than those for the nadir images. Comparing the be-
havior of the various methods, Table VII shows that for the nadir aspect, naive

mlj02.tex; 21/04/2002; 15:56; p.23

24 Maloof, Langley, Binford, Nevatia, and Sage

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Naive Bayes
k-NN, k = 11

BUDDS Classifier
Perceptron

C5.0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Naive Bayes
k-NN, k = 11

BUDDS Classifier
Perceptron

C5.0

Figure 6. ROC curves for experiment that tested generalization over location. Left: For each
pair of images for the nadir aspect, we trained the methods on that pair and tested the resulting
concept descriptions on the third image. We then plotted the average true positive and false
positive rates. Right: We applied the same methodology using the images for the oblique
aspect.

Table VII. Results for between-image experiment in which we tested generalization
over location. The labels ‘Nadir’ and ‘Oblique’ indicate the testing condition. We de-
rived analogous results for the within-image experiments by averaging the results for
each condition. Approximate areas appear with 95% confidence intervals.

Location Experiment Average Within Image

Classifier Nadir Oblique Nadir Oblique

C5.0 0.872 � 0.025 0.779 � 0.037 0.889 � 0.008 0.851 � 0.007

Naive Bayes 0.887 � 0.032 0.833 � 0.028 0.889 � 0.012 0.865 � 0.010

Perceptron 0.877 � 0.031 0.802 � 0.052 0.880 � 0.011 0.808 � 0.017

k-NN, k = 11 0.860 � 0.024 0.796 � 0.021 0.872 � 0.012 0.823 � 0.009

BUDDS Classifier 0.813 � 0.025 0.840 � 0.033 0.809 � 0.016 0.846 � 0.014

Bayes performs better than the BUDDS classifier, yielding areas of 0.887 and
0.813, respectively. As before, all of the learning methods performed better
than the BUDDS classifier. When generalizing over location with the oblique
images, the BUDDS classifier performed the best (0.84), but naive Bayes was
a close second with an area under its curve of 0.833. Generally speaking, the
learning methods did not fare as well in this experimental condition.

8.2.3. Leaving One Image Out
Our third and final experiment was an attempt to evaluate how the methods
might perform in a real-world setting. In this scenario, developers train a sys-
tem using a set of images, and then image analysts use the system to identify
objects in a new image that may differ in location, aspect, or both.

mlj02.tex; 21/04/2002; 15:56; p.24

Improved Rooftop Detection with Machine Learning 25

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Naive Bayes
k-NN, k = 11

BUDDS Classifier
Perceptron

C5.0

Figure 7. ROC curve for the experiment in which we left each image out as a test image
and trained using the remaining five images. Naive Bayes produced the curve with the largest
area, but all of the other learning methods yielded curves larger in area than that of the BUDDS

classifier.

Table VIII. Results for the experiment in which we left images out for
testing and trained using the remaining five images. We held out each
image, each nadir image, and each oblique image. Average areas under
the ROC curve appear with 95% confidence intervals.

Area under ROC Curve

Classifier Each Nadir Oblique

Naive Bayes 0.887 � 0.040 0.911 � 0.065 0.863 � 0.051

Perceptron 0.874 � 0.044 0.909 � 0.071 0.855 � 0.082

C5.0 0.854 � 0.042 0.880 � 0.062 0.828 � 0.059

k-NN (k � 11) 0.845 � 0.043 0.872 � 0.075 0.819 � 0.042

BUDDS Classifier 0.828 � 0.039 0.829 � 0.068 0.828 � 0.069

For this experiment, we evaluated the learning methods under three exper-
imental conditions. In the first, we selected each of the images for testing
and used the remaining images for training. In the second, we proceeded
similarly, but left out each of the nadir images. In the third, we left out each
of the oblique images. For each data set in each condition, we applied each
learning method, testing the resulting classifiers over a range of error costs
on rooftop candidates from the test image, with each method producing an
ROC curve. We repeated this procedure for each image remaining in the set
and averaged over the runs. Plots of the ROC curves for the first condition
appear in Figure 7. We also approximated the area under the curves for all
three conditions and computed 95% confidence intervals, and these measures
appear in Table VIII.

mlj02.tex; 21/04/2002; 15:56; p.25

26 Maloof, Langley, Binford, Nevatia, and Sage

As in the previous experiments, the learning methods generally outper-
formed the handcrafted BUDDS classifier, which produced a curve with an
area of roughly 0.828 for each of the three experimental conditions. Naive
Bayes, as in the previous settings, performed the best with an area under the
ROC curve of 0.887 for the first condition, 0.911 for the condition in which
we held our nadir images, and 0.863 for the condition in which we held out
oblique images. In this experiment, we again see evidence that the oblique
images posed a more difficult learning problem than the nadir images. Finally,
for the condition in which we left out each of the oblique images, naive Bayes
and the perceptron outperformed the BUDDS classifiers, but this was not true
of C5.0 and k-NN, for k � 11.

8.2.4. Summary
In experiments testing performance on unseen images, the results of the naive
Bayesian classifier support our main hypothesis. In most experimental condi-
tions, this method fared better than the BUDDS linear classifier. On the other
hand, we were disappointed that the learning methods performed worse than
the BUDDS classifier in the hardest experimental condition: generalizing to
new locations with an oblique viewpoint, which went against our original
expectations.

Recall that we also anticipated that generalizing across images would
give lower accuracies than generalizing within images. To test this hypoth-
esis, we must compare the results from these experiments with those from
the within-image experiments. Simple calculation shows that for the within-
image condition, naive Bayes produced an average ROC area of 0.889 for
the nadir images and 0.865 for the oblique images. Similarly, C5.0 aver-
aged 0.889 for the nadir images and 0.851 for the oblique images. Most of
these average areas, which appear in the two rightmost columns of Tables VI
and VII, are larger than the analogous areas that resulted when these methods
generalized across location and aspect. One exception is that naive Bayes,
C5.0, and the perceptron performed almost as well when generalizing over
location for the nadir image (see Table VII), but the results generally support
our prediction.

Finally, in perhaps the most realistic experimental condition in which we
trained methods on a collection of images and tested on new images, the
learning methods, especially naive Bayes, performed quite well. Although
this outcome supports our hypothesis that learning methods can outperform
handcrafted heuristics, it highlights the need for incorporating learning mech-
anisms into systems for image analysis.

mlj02.tex; 21/04/2002; 15:56; p.26

Improved Rooftop Detection with Machine Learning 27

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Naive Bayes
k-NN, k = 11

BUDDS Classifier
Perceptron

C5.0

Figure 8. Results from Experiment I plotted in an ROC graph.

9. Discussion of the Experimental Results

In the first experiment, we evaluated the four learning methods traditionally,
without taking into account the cost of errors and using accuracy as our mea-
sure of performance. Based on these results, there was no clear choice for
the best performing classifier. C5.0 did achieve the highest overall predictive
accuracy, but naive Bayes, while doing poorly overall, performed the best on
the most important class, the rooftops. Nevertheless, naive Bayes’ true posi-
tive rate was not significantly better than the handcrafted BUDDS classifier’s,
the method we were attempting to improve upon.

If we plot the true positive and false positive rates from the first experiment
in an ROC graph, as shown in Figure 8, we gain additional insights into the
relative performances of the methods. We see that each of the points lie on
some unknown ROC curve and that the first experiment charted little of the
ROC space.

In the second experiment, because of an improved evaluation method-
ology that involved cost-sensitive learning algorithms, ROC analysis, and a
single measure of performance—area under the ROC curve—we had a much
better understanding of how each method performed. Although we may have
been able to conclude based on the results of the first experiment that C5.0
was the best method for detecting rooftops, the results from the second ex-
periment more clearly demonstrated this fact, and we were able to draw this
conclusion with greater certainty.

Comparing the performances of naive Bayes in the first and second exper-
iments, we see how the ROC methodology elucidated important but hidden
aspects of performance. Based on the results from the first experiment, we
concluded that the performance of naive Bayes was no better than that of
the BUDDS classifier. Yet, the results from the second experiment revealed
a very different picture and showed that over a range of costs and in an

mlj02.tex; 21/04/2002; 15:56; p.27

28 Maloof, Langley, Binford, Nevatia, and Sage

important region of the ROC space (i.e, where the true positive rate is greater
than 0.6 and the false positive rate is less than 0.4), naive Bayes significantly
outperformed the BUDDS classifier.

As we discussed previously, the skewed distribution of the data set con-
siderably affected the performance of the perceptron, which simply learned
to predict the negative class, but did not affect as greatly the performance
of naive Bayes, which found a more acceptable trade-off between the false
positive and true positive rates. We speculate that each learning method op-
erates under the influence of an inherent but unknown set of cost parameters
associated with its inductive bias. These differences may have caused naive
Bayes to be less effected than the perceptron by the skewed distribution of
the data set and may partially account for the differences in performance of
the methods in Experiment I.

Although the perceptron did quite poorly in the first experiment, the results
from the second experiment showed ultimately that its ROC curve did indeed
dominate that of the BUDDS classifier. Therefore, a problem with using accu-
racy as the sole measure of performance is that under certain conditions, we
may conclude that a given method is superior to other methods, when in fact,
the ROC curves for the same methods, for the same task, reveal completely
different phenomena.

From the within-learning experiments, in which we trained and tested the
learning methods using data derived from the same image, it was apparent
that at least one machine learning method, naive Bayes, showed promise of
improving the detection of rooftops over the handcrafted linear classifier. The
results from this experiment also established baseline performance conditions
for the methods because they controlled for differences in aspect and location.

In an effort to test the learning methods for their ability to generalize to un-
seen images, we found that rooftop detection for oblique images posed a more
difficult problem than for nadir images. This could be because BUDDS was
initially developed using nadir images and then extended to handle oblique
images. Thus, the features may be biased toward nadir-view rooftops. A more
likely explanation is that oblique images are simply harder than nadir images.
As we indicated previously, oblique images yield more negative examples,
and we believe these additional negative examples pose a more difficult learn-
ing problem. Nevertheless, under all but one circumstance, the performance
of naive Bayes was better than that of the handcrafted linear classifier.

10. Related Work

Research on learning in computer vision has become increasingly common
in recent years. Some work in visual learning takes an image-based approach
(e.g., Beymer & Poggio, 1996), in which the images themselves, usually nor-

mlj02.tex; 21/04/2002; 15:56; p.28

Improved Rooftop Detection with Machine Learning 29

malized or transformed in some way, are used as input to a learning process,
which is responsible for forming the intermediate representations necessary
to transform the pixels into a decision or classification. Researchers have
used this approach extensively for face and gesture recognition (e.g., Chan,
Nasrabadi, & Mirelli, 1996; Gutta, Huang, Imam, & Weschler, 1996; Osuna,
Freund, & Girosi, 1997; Segen, 1994), although it has seen other applications
as well (e.g., Nayar & Poggio, 1996; Pomerleau, 1996; Viola, 1993).

A slightly different approach relies on handcrafted vision routines to ex-
tract relevant image features, based on intensity or shape properties, then
recognizes objects using learned classifiers that take these features as in-
puts. For example, Shepherd (1983) used decision-tree induction to construct
classifiers for chocolate shapes in an industrial vision application. Cromwell
and Kak (1991) took a similar approach to recognizing electrical compo-
nents, such as transistors, resistors, and capacitors. Maloof and Michalski
(1997) examined various methods of learning shape characteristics for detect-
ing blasting caps in X-ray images, whereas additional work (Maloof, Duric,
Michalski, & Rosenfeld, 1996) discussed learning in a multi-step vision sys-
tem for the same detection problem.

Researchers have also investigated structural approaches, which we di-
vide into two categories: model-based and hierarchical. The former approach
relies on features computed from images, but combines elementary visual
constructs extracted from images to form higher-level constructs, which the
system compares to a database of object models. Connell and Brady (1987)
incorporated learning into a model-based vision system. Using the vision task
of classifying airplanes from aerial views, their method converts objects into
semantic networks, which serve as training examples for a learning process
that produces generalized object descriptions. However, the authors do not
appear to have tested experimentally their algorithm’s ability to classify ob-
jects in new images. Binford, Levitt, and colleagues, in a series of papers,
examined Bayesian methods for inference in a model-based system using
generalized cylinders as the primitive (Binford, Levitt, & Mann, 1987; Levitt,
Agosta, & Binford, 1989).

Hierarchical vision systems work similarly to model-based systems but
eliminate the requirement of a model-base and model matching by using
perceptual grouping operations to combine visual constructs and by using
heuristics to select the most promising constructs for further processing (Mo-
han & Nevatia, 1989). Grouping and selection continues until the system
forms a view-dependent representation of the object detected in the image.
Researchers have successfully applied this approach to building detection in
single images (Lin & Nevatia, 1998) and in multiple images (Noronha &
Nevatia, 1997). Recent work on learning within this framework has concen-
trated on single levels of the hierarchy (Maloof, Langley, Binford, & Nevatia,
1998; Maloof et al., 1997; Kim & Nevatia, 1999, 2000), with two exceptions

mlj02.tex; 21/04/2002; 15:56; p.29

30 Maloof, Langley, Binford, Nevatia, and Sage

being that of Maloof (2000) and of Pope and Lowe (2000). Finally, Sarkar
and Soundararajan (2000) used learning automata to acquire the knowledge
necessary for perceptual grouping.

Several researchers have also investigated learning for three-dimensional
vision systems. Papers by Conklin (1993), Cook, Hall, Stark, and Bowyer
(1993), Woods, Cook, Hall, Bowyer, and Stark (1995), Provan, Langley, and
Binford (1996), and Sengupta and Boyer (1993) all describe inductive ap-
proaches aimed at improving object recognition. The objective of this ap-
proach is to learn the three-dimensional structure that characterizes an object
or object class, rather than its appearance. Another line of research, which
falls midway between this approach and image-based schemes, instead at-
tempts to learn a small set of characteristic views, each of which can be used
to recognize an object from a different perspective (e.g., Gros, 1993; Pope &
Lowe, 1996).

Much of the research on visual learning uses images of scenes or objects
viewed at eye level (e.g., Draper, 1997; Sarkar & Soundararajan, 2000; Teller
& Veloso, 1997). One exception is the SKICAT system (Fayyad, Smyth,
Burl, & Perona, 1996), which catalogs celestial objects, such as galaxies
and stars, using images from the Second Palomar Observatory Sky Survey.
A related system, JARTool (Fayyad et al., 1996), also analyzes aerial images,
in this case to detect Venusian volcanos, using synthetic aperture radar on the
Magellan spacecraft.

Burl and his colleagues extended JARTool by using an ensemble of 48
neural networks to improve performance (Burl et al., 1998). Using ROC
curves, they demonstrated that the ensemble achieved better performance
than either the individually learned classifiers or the one used originally in
JARTool. They also documented some of the difficulties associated with ap-
plying machine learning techniques to real-world problems, such as feature
selection and instance labeling, which were similar to those we encountered.

Kubat, Holte, and Matwin (1998) used the SHRINK system (Kubat, Holte,
& Matwin, 1996) to detect oil spills in overhead images. They too dealt with
imbalanced data sets, but also coped with a scarcity of data that was not
present in our domain. Luckily, we were able to select images that contained
sufficient concentrations of buildings, but oil spills, especially those captured
in satellite images, proved to be a rarity. Their images from a synthetic aper-
ture radar covered 3500 square kilometers and contained as few as two oil
spills. Although they had more images than we—nine versus our six—our
system extracted many more objects: 17,829 positive and negative examples
of rooftops as compared to 937 positive and negative examples of oil spills.
Interestingly, the relative proportion of positive examples in these data sets
was identical: approximately 4.38%.

Finally, Draper (1996) conducted a careful study of learning in the context
of analyzing aerial images. His approach adapted methods for reinforcement

mlj02.tex; 21/04/2002; 15:56; p.30

Improved Rooftop Detection with Machine Learning 31

learning to assign credit in multi-stage recognition procedure (for software
similar to BUDDS), then used an induction method (back-propagation in neu-
ral networks) to learn conditions on operator selection. He presented initial
results for detecting rooftops as part of the RADIUS project (Firschein &
Strat, 1997), which we discussed previously in Section 2. Our framework
shares some features with Draper’s approach, but assumes that learning is
directed by feedback from a human expert. We predict that our supervised
method will be more computationally tractable than his use of reinforcement
learning, which is well known for its high complexity. Our approach does
require more interaction with users, but we believe this interaction will be
unobtrusive if cast within the context of an advisory system for image analy-
sis. Indeed, we have recently formulated a design for incorporating machine
learning algorithms into hierarchical vision systems, and preliminary results
for simple, compositional objects are encouraging (Maloof, 2000).

Interest in cost-sensitive learning and in ROC analysis has become in-
creasingly common in recent years, and our work along these lines has some
precedents. We have already mentioned the work of Pazzani and his col-
leagues (Pazzani et al., 1994), who used a hypothetical cost analysis and
constructed minimal-cost classifiers. Similarly, Draper, Brodley, and Utgoff
(1994) incorporated the cost of errors into their algorithm for constructing and
pruning multivariate decision trees. They tested this approach on the task of
labeling pixels from outdoor images for use by a road-following vehicle. They
determined that in this context, labeling a road pixel as non-road was more
costly than the reverse, and showed experimentally that their method could
reduce such errors on novel test pixels. Woods, Kegelmeyer, and Bowyer
(1997), as well as Rowley, Baluja, and Kanade (1996), reported similar work
taking into account the cost of errors.

Researchers have begun using ROC analysis to measure performance of
classifiers when costs are unknown or when data sets are skewed. Bradley
(1997) incorporated mechanisms to adjust the decision threshold of several
learning algorithms and used ROC analysis to measure performance on sev-
eral UCI data sets (Blake & Merz, 1998). Provost et al. (1998) conducted a
similar study but emphasized the problems with using accuracy as a measure
of performance. We have used ROC analysis to measure the ability of various
classifiers to generalize on a rooftop detection task when unseen images var-
ied in aspect and in location (Maloof et al., 1998). As mentioned previously,
we have also conducted a comparative study that examined the errors experts
made when labeling training data using our visual interface and the effect of
such errors on learning (Ali et al., 1998).

In terms of the statistical analysis of ROC curves, Bradley (1997) used
ANOVA and Duncan’s test to analyze the means and subgroups of means,
respectively, of classifier performance, as measured by area under the curve.
However, this analysis treats a classifier’s performance on an individual case

mlj02.tex; 21/04/2002; 15:56; p.31

32 Maloof, Langley, Binford, Nevatia, and Sage

in the testing set as a fixed effect, and as a result, we cannot generalize these
results to the population from which the test cases were drawn (Metz, 1989).
We can generalize them only to the population of test sets. Furthermore,
empirical results from a Monte Carlo simulation suggest that, since ANOVA
does not adequately account for case-sample variance, especially when sam-
ple sizes are small, it fails to reject the null hypothesis more frequently than
methods designed to account for this variance. Therefore, ANOVA may be
overly optimistic for machine-learning experiments using area under the ROC
curve as the performance metric (Maloof, 2002).

Estimating or accounting for case-sample variance can be difficult, but as
we have described, Dorfman et al. (1992) detailed a methodology in which
one uses the Jackknife method (Hinkley, 1983) to account for case-sample
variance and then applies traditional ANOVA to test significance. Recently,
Beiden, Wagner, and Campbell (2000) proposed a nonparametric method
for comparing means of areas that involves conducting a series of bootstrap
experiments to estimate components of variance, like the case-sample vari-
ance. Although developed for human-reader experiments in medical imaging,
researchers have begun to apply this method to the analysis of learning al-
gorithms (Beiden, Maloof, & Wagner, 2002; Maloof, Beiden, & Wagner,
2002). There has also been work on the analysis of portions of ROC curves
(Thompson & Zucchini, 1986; Woods et al., 1997) and in situations in which
no single ROC curve dominates in all parts of the ROC space (e.g., Provost &
Fawcett, 1997). Researchers have also proposed extensions to ROC analysis
for the case of multiple decision categories (Hand & Till, 2001; Mossman,
1999; Swets & Pickett, 1982).

11. Concluding Remarks

Although this study has provided some insight into the role of cost-sensitive
algorithms and ROC analysis in systems for image understanding, much still
remains to be done. For example, we may want to consider other measures of
performance that take into account the presence of multiple valid candidates
for a given rooftop. Classifying one of these candidates correctly is sufficient
for the purpose of image analysis.

As we mentioned earlier, in order to automate the collection of training
data for learning, we also hope to integrate learning routines into BUDDS. This
system was not designed initially to be interactive, but we intend to modify
it so that the image analyst can accept or reject recommendations made by
the image understanding system, generating training data in the process. At
intervals the system would invoke its learning algorithms, producing revised
knowledge that would alter the system’s behavior in the future and, hopefully,

mlj02.tex; 21/04/2002; 15:56; p.32

Improved Rooftop Detection with Machine Learning 33

reduce the user’s need to make corrections. The interactive labeling system
described in Section 5 could serve as an initial model for this interface.

Although the rooftop selection stage was a natural place to start in ap-
plying our methods, we intend to work at both earlier and later levels of the
building detection process. The goal here is not only to increase classification
accuracy, which could be handled entirely by candidate selection, but also
to reduce the complexity of processing by removing poor candidates before
they are aggregated into larger structures. With this aim in mind, we plan to
extend our work to all levels of the image understanding process. We must
address a number of issues before we can make progress on these other
stages. One involves identifying the cost of different errors at each level,
and taking this into account in our modified induction algorithms. Another
concerns whether we should use the same induction algorithm at each level
or use different methods at each stage. We could also use multiple methods
at each level and apply ensemble methods, such as stacking (Wolpert, 1992)
or bagging (Breiman, 1996), to produce a single decision and to take into
account contextual cues, such as aspect.

In conclusion, our studies suggest that machine learning has an important
role to play in improving the accuracy and the robustness of image analysis
systems. We need to extend learning to additional levels of the image under-
standing process, and before we can build a system that truly aids the human
image analyst, we must further develop unobtrusive ways to collect training
data to support learning. Nevertheless, as more and more vision systems rely
on learning and adaptive mechanisms, it will become increasingly important
to properly measure the performance of such systems.

Appendix

A. Generating ROC Curves

We are aware of three methods of generating ROC curves (Metz, 1978). First,
if we modify the performance element of a learning method to produce a
numeric rating for each test case—for example, with naive Bayes, we might
select the posterior probability of the positive class—then we can use a para-
metric approach by assuming a binormal distribution (i.e., observations of
each of the two classes are normally distributed) and fitting the ROC curve
of maximum likelihood (Dorfman & Alf, 1969). It is then a simple matter of
computing the area under this curve (Bamber, 1975; Thompson & Zucchini,
1986).

Second, with such ratings, we can also use a nonparametric approach in
which we map the sorted case ratings into, say, 10–12 discrete categories
(Wagner, Beiden, & Metz, 2001) and use the number of actually positive

mlj02.tex; 21/04/2002; 15:56; p.33

34 Maloof, Langley, Binford, Nevatia, and Sage

cases and actually negative cases of each category to calculate the true posi-
tive and false positive rates of an ROC curve.

With these points, we can use the trapezoid rule to compute the approx-
imate area under the curve, Â, but researchers have shown this measure to
be equal to the Mann-Whitney two-sample statistic (DeLong, DeLong, &
Clarke-Peterson, 1988), which is convenient for numeric case ratings. Given
m ratings of negative cases, r � , and n ratings of positive cases, r � ,

Â � 1
mn

m

∑
i � 1

n

∑
j � 1

I � r �i 	 r �j ��	
where

I � r � 	 r � � ������ 1 if r � � r � ;
1
2 if r � � r � ;
0 if r �
 r �

For some algorithms, it is easy to modify the performance element to
produce these ratings. For this purpose, we have used for naive Bayes the
posterior probability of the positive class, for k-NN, the number of majority
votes for the positive class, and for linear and quadratic discriminants, the
output of the discriminant function (Maloof et al., 2002).

However, when we attempted to modify C4.5 (Quinlan, 1993) in this man-
ner by using as ratings the weights that the performance element computes
for test instances, the resulting ROC curves were either degenerate or not of
the correct area (which we established through further experimentation). It
appears the problem is that C4.5, like many learning methods, partitions the
representation space to form decision regions with instances in each region
being equiprobable. If the number of decision regions is few, then there will
be little information present in the case ratings for constructing the ROC
curve.

The third method of generating ROC curves, which we used in this study,
involves varying some aspect of the learning method or the experiment to bias
the learner toward one class versus the other. Unfortunately, such schemes
tend to be specific to a learning method (cf. Domingos, 1999) and can in-
crease the running time, but include varying the prior probabilities of each
class, the error cost of each class, the decision threshold, and the class distri-
bution of examples in the training set.

In this study, we chose to introduce a mechanism into the performance
element that adjusts the decision threshold. Once we have modified the al-
gorithm in this fashion, then it should be a simple matter to select various
thresholds, to evaluate the examples in the test set at each, and to produce a
set of true positive and false positive rates that form an ROC curve. Unfor-
tunately, many things conspire to make selecting a set of decision thresholds
difficult, such as the distribution of the training examples and the inductive

mlj02.tex; 21/04/2002; 15:56; p.34

Improved Rooftop Detection with Machine Learning 35

bias of the learner. For instance, it can be difficult to predict which threshold
will produce a given point on an ROC curve. A set of parameters for varying
the decision threshold for one algorithm will not necessarily produce the same
ROC curve for another algorithm. Finally, for a given algorithm and set of
decision thresholds, different splits of the data set will yield different ROC
curves. This was especially true when we trained on nadir images and tested
on oblique images.

Reluctantly, we concluded that setting these thresholds by trial and error
for each algorithm would be necessary. We split all of the available data into
single training (60%) and testing (40%) sets, and applied each learning algo-
rithm. For each method, we began with the decision threshold implying that
mistakes on the positive class were maximally expensive, which produced
the point � 0 	 0 � on the ROC graph. We repeatedly added new cost parameters
that increasingly favored the positive class until the performance element
swept out a curve that was well-shaped with points distributed evenly along
its length.

This third method of generating ROC curves can be disadvantageous for
algorithms with a costly performance element, such as k-NN. We must cycle
through the training examples, finding the k closest neighbors, for each cost
parameter. For our data set, this was expensive. Other methods performed
quickly. For instance, the perceptron computes a simple weighted sum, and
evaluating this sum for each example and over the cost parameters required
little time. Nevertheless, we contend that the nonparametric method of pro-
ducing ROC curves is more efficient and more principled, but as we have
described, it may not work well for all learning methods without significant
modification.

Acknowledgements

The authors thank Wayne Iba for assistance with naive Bayes, Dan Shapiro
for discussions about decision theory, Yan Bulgak for proofreading a draft of
the paper, Ross Quinlan for describing the cost-sensitive mechanisms in C5.0,
and Andres Huertas and Andy Lin for advice and assistance in obtaining the
images and data used for experimentation. Robert Wagner provided valuable
comments regarding ROC analysis, and Sergey Beiden conducted the anal-
ysis of the learning algorithms using LabMRMC. We are grateful to Doug
Fisher and the anonymous reviewers, who provided constructive and collegial
advice that notably improved an earlier version of the manuscript. We thank
the Department of Computer Science at Georgetown University for their sup-
port of this work. This research was conducted at the Institute for the Study of
Learning and Expertise and in the Computational Learning Laboratory, Cen-
ter for the Study of Language and Information, at Stanford University. The

mlj02.tex; 21/04/2002; 15:56; p.35

36 Maloof, Langley, Binford, Nevatia, and Sage

work was supported by the Defense Advanced Research Projects Agency, un-
der grant N00014-94-1-0746, administered by the Office of Naval Research,
and by Sun Microsystems through a generous equipment grant.

References

Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms.
Machine Learning, 6, 37–66.

Ali, K., Langley, P., Maloof, M., Sage, S., & Binford, T. (1998). Improving
rooftop detection with interactive visual learning. In Proceedings of
the Image Understanding Workshop (pp. 479–492). San Francisco,
CA: Morgan Kaufmann.

Bamber, D. (1975). The area above the ordinal dominance graph and the
area below the receiver operating characteristic graph. Journal of
Mathematical Psychology, 12, 387–415.

Beiden, S., Maloof, M., & Wagner, R. (2002). Analysis of competing clas-
sifiers in terms of components of variance of ROC summary accuracy
measures: Generalization to a population of trainers and a population
of testers. In Proceedings of the SPIE International Symposium on
Medical Imaging: Image Processing (Vol. 4684).

Beiden, S., Wagner, R., & Campbell, G. (2000). Components-of-variance
models and multiple-bootstrap experiments: An alternative method for
random-effects Receiver Operating Characteristic analysis. Academic
Radiology, 7, 341–349.

Beymer, D., & Poggio, T. (1996). Image representations for visual learning.
Science, 272, 1905–1909.

Binford, T., Levitt, T., & Mann, W. (1987). Bayesian inference in model-
based machine vision. In Proceedings of the Third Annual Conference
on Uncertainty in Artificial Intelligence (UAI-87) (pp. 73–97). New
York, NY: Elsevier Science.

Blake, C., & Merz, C. (1998). UCI Repository of machine learning databases
([http://www.ics.uci.edu/ mlearn/MLRepository.html]). Department
of Information and Computer Sciences, University of California,
Irvine.

Bradley, A. (1997). The use of the area under the ROC curve in the eval-
uation of machine learning algorithms. Pattern Recognition, 30(7),
1145–1159.

mlj02.tex; 21/04/2002; 15:56; p.36

Improved Rooftop Detection with Machine Learning 37

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and
regression trees. Boca Raton, FL: Chapman & Hall/CRC Press.

Burl, M., Asker, L., Smyth, P., Fayyad, U., Perona, P., Crumpler, L., &
Aubele, J. (1998). Learning to recognize volcanoes on Venus. Machine
Learning, 30, 165–194.

Cardie, C., & Howe, N. (1997). Improving minority class prediction using
case-specific feature weights. In Proceedings of the Fourteenth Inter-
national Conference on Machine Learning (pp. 57–65). San Francisco,
CA: Morgan Kaufmann.

Chan, L., Nasrabadi, N., & Mirelli, V. (1996). Multi-stage target recogni-
tion using modular vector quantizers and multilayer perceptrons. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR ’96) (pp. 114–119). Los Alamitos, CA: IEEE
Press.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine
Learning, 3, 261–284.

Conklin, D. (1993). Transformation-invariant indexing and machine discov-
ery for computer vision. In Papers from the the AAAI Fall Symposium
on Machine Learning in Computer Vision: What, Why, and How?
Technical Report No. FS-93-04 (pp. 10–14). Menlo Park, CA: AAAI
Press.

Connell, J., & Brady, M. (1987). Generating and generalizing models of
visual objects. Artificial Intelligence, 31, 159–183.

Cook, D., Hall, L., Stark, L., & Bowyer, K. (1993). Learning combination of
evidence functions in object recognition. In Papers from the the AAAI
Fall Symposium on Machine Learning in Computer Vision: What, Why,
and How? Technical Report No. FS-93-04 (pp. 139–143). Menlo Park,
CA: AAAI Press.

Cromwell, R., & Kak, A. (1991). Automatic generation of object class
descriptions using symbolic learning techniques. In Proceedings of
the Ninth National Conference on Artificial Intelligence (pp. 710–717).
Menlo Park, CA: AAAI Press.

DeLong, E., DeLong, D., & Clarke-Peterson, D. (1988). Comparing the areas
under two or more correlated receiver operating characteristic curves:
A nonparametric approach. Biometrics, 44, 837–845.

mlj02.tex; 21/04/2002; 15:56; p.37

38 Maloof, Langley, Binford, Nevatia, and Sage

Domingos, P. (1999). MetaCost: A general method for making classifiers
cost-sensitive. In Proceedings of the Fifth International Conference on
Knowledge Discovery and Data Mining (pp. 155–164). New York, NY:
ACM Press.

Dorfman, D., & Alf, E., Jr. (1969). Maximum likelihood estimation of
parameters of signal-detection theory and determination of confidence
intervals—rating method data. Journal of Mathematical Psychology,
6, 487–496.

Dorfman, D., Berbaum, K., & Metz, C. (1992). Receiver Operating Char-
acteristic rating analysis: Generalization to the population of readers
and patients with the Jackknife method. Investigative Radiology, 27,
723–731.

Draper, B. (1996). Learning grouping strategies for 2D and 3D object
recognition. In Proceedings of the Image Understanding Workshop
(pp. 1447–1454). San Francisco, CA: Morgan Kaufmann.

Draper, B. (1997). Learning control strategies for object recognition. In
K. Ikeuchi & M. Veloso (Eds.), Symbolic visual learning (pp. 49–76).
New York, NY: Oxford University Press.

Draper, B., Brodley, C., & Utgoff, P. (1994). Goal-directed classification
using linear machine decision trees. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 16(9), 888–893.

Duda, R., & Hart, P. (1973). Pattern classification and scene analysis. New
York, NY: John Wiley & Sons.

Egan, J. (1975). Signal detection theory and ROC analysis. New York, NY:
Academic Press.

Ezawa, K., Singh, M., & Norton, S. (1996). Learning goal-oriented Bayesian
networks for telecommunications risk management. In Proceedings
of the Thirteenth International Conference on Machine Learning (pp.
139–147). San Francisco, CA: Morgan Kaufmann.

Fawcett, T., & Provost, F. (1997). Adaptive fraud detection. Data Mining
and Knowledge Discovery, 1, 291–316.

Fayyad, U., Smyth, P., Burl, M., & Perona, P. (1996). Learning to catalog
science images. In S. Nayar & T. Poggio (Eds.), Early visual learning
(pp. 237–268). New York, NY: Oxford University Press.

Firschein, O., & Strat, T. (Eds.). (1997). RADIUS: Image understanding for
imagery intelligence. San Francisco, CA: Morgan Kaufmann.

mlj02.tex; 21/04/2002; 15:56; p.38

Improved Rooftop Detection with Machine Learning 39

Freund, Y., & Schapire, R. (1996). Experiments with a new boosting al-
gorithm. In Proceedings of the Thirteenth International Conference
on Machine Learning (pp. 148–156). San Francisco, CA: Morgan
Kaufmann.

Freund, Y., Seung, H., Shamir, E., & Tishby, N. (1997). Selective sampling
using the Query by Committee algorithm. Machine Learning, 28, 133–
168.

Green, D., & Swets, J. (1974). Signal detection theory and psychophysics.
New York, NY: Robert E. Krieger Publishing.

Gros, P. (1993). Matching and clustering: Two steps towards automatic object
model generation in computer vision. In Papers from the the AAAI Fall
Symposium on Machine Learning in Computer Vision: What, Why, and
How? Technical Report No. FS-93-04 (pp. 40–44). Menlo Park, CA:
AAAI Press.

Gutta, S., Huang, J., Imam, I., & Weschler, H. (1996). Face and hand ges-
ture recognition using hybrid classifiers. In Proceedings of the Second
International Conference on Automatic Face and Gesture Recognition
(pp. 164–169). Los Alamitos, CA: IEEE Press.

Hand, D., & Till, R. (2001). A simple generalisation of the area under
the ROC curve for multiple class classification problems. Machine
Learning, 45, 171–186.

Hanley, J., & McNeil, B. (1982). The meaning and use of the area under a
Receiver Operating Characteristic (ROC) curve. Radiology, 143, 29–
36.

Hinkley, D. (1983). Jackknife methods. In S. Kotz, N. Johnson, & C. Read
(Eds.), Encyclopedia of statistical sciences (Vol. 4, pp. 280–287). New
York, NY: John Wiley & Sons.

John, G., & Langley, P. (1995). Estimating continuous distributions in
Bayesian classifiers. In Proceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence (pp. 338–345). San Francisco,
CA: Morgan Kaufmann.

Keppel, G., Saufley, W., & Tokunaga, H. (1992). Introduction to design and
analysis (2nd ed.). New York, NY: W.H. Freeman.

Kim, Z., & Nevatia, R. (1999). Uncertain reasoning and learning for feature
grouping. Computer Vision and Image Understanding, 76(3), 278–288.

mlj02.tex; 21/04/2002; 15:56; p.39

40 Maloof, Langley, Binford, Nevatia, and Sage

Kim, Z., & Nevatia, R. (2000). Learning Bayesian networks for diverse and
varying numbers of evidence sets. In Proceedings of the Seventeenth
International Conference on Machine Learning (pp. 479–486). San
Francisco, CA: Morgan Kaufmann.

Kubat, M., Holte, R., & Matwin, S. (1996). Learning when negative examples
abound. In Proceedings of the 1997 European Conference on Machine
Learning.

Kubat, M., Holte, R., & Matwin, S. (1998). Machine learning for the
detection of oil spills in satellite images. Machine Learning, 30,
195–215.

Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced
training sets: One-sided selection. In Proceedings of the Fourteenth
International Conference on Machine Learning (pp. 179–186). San
Francisco, CA: Morgan Kaufmann.

Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian clas-
sifiers. In Proceedings of the Tenth National Conference on Artificial
Intelligence (pp. 223–228). Menlo Park, CA: AAAI Press.

Langley, P., & Simon, H. (1995). Applications of machine learning and rule
induction. Communications of the ACM, 38(11), 54–64.

Levitt, T., Agosta, J., & Binford, T. (1989). Model-based influence diagrams
for machine vision. In Proceedings of the Fifth Annual Conference
on Uncertainty in Artificial Intelligence (UAI-89) (pp. 371–388). New
York, N.Y.: Elsevier Science.

Lewis, D., & Catlett, J. (1994). Heterogeneous uncertainty sampling for
supervised learning. In Proceedings of the Eleventh International
Conference on Machine Learning (pp. 148–156). San Francisco, CA:
Morgan Kaufmann.

Lin, C., & Nevatia, R. (1998). Building detection and description from a
single intensity image. Computer Vision and Image Understanding,
72(2), 101–121.

Maloof, M. (2000). An initial study of an adaptive hierarchical vision
system. In Proceedings of the Seventeenth International Conference
on Machine Learning (pp. 567–573). San Francisco, CA: Morgan
Kaufmann.

Maloof, M. (2002). On machine learning, ROC analysis, and statistical
tests of significance. In Proceedings of the Sixteenth International
Conference on Pattern Recognition. Los Alamitos, CA: IEEE Press.

mlj02.tex; 21/04/2002; 15:56; p.40

Improved Rooftop Detection with Machine Learning 41

Maloof, M., Beiden, S., & Wagner, R. (2002). Analysis of com-
peting classifiers in terms of components of variance of ROC
accuracy measures (Technical Report No. CS-02-01). Washing-
ton, DC: Department of Computer Science, Georgetown University.
(http://www.cs.georgetown.edu/ maloof/pubs/cstr-02-01.html)

Maloof, M., Duric, Z., Michalski, R., & Rosenfeld, A. (1996). Recognizing
blasting caps in X-ray images. In Proceedings of the Image Under-
standing Workshop (pp. 1257–1261). San Francisco, CA: Morgan
Kaufmann.

Maloof, M., Langley, P., Binford, T., & Nevatia, R. (1998). Generalizing over
aspect and location for rooftop detection. In Proceedings of the Fourth
IEEE Workshop on Applications of Computer Vision (WACV ’98) (pp.
194–199). Los Alamitos, CA: IEEE Press.

Maloof, M., Langley, P., Binford, T., & Sage, S. (1998). Learning to detect
rooftops in overhead imagery (Technical Report No. 98-1). Palo Alto,
CA: Institute for the Study of Learning and Expertise.

Maloof, M., Langley, P., Sage, S., & Binford, T. (1997). Learning to detect
rooftops in aerial images. In Proceedings of the Image Understanding
Workshop (pp. 835–845). San Francisco, CA: Morgan Kaufmann.

Maloof, M., & Michalski, R. (1997). Learning symbolic descriptions of
shape for object recognition in X-ray images. Expert Systems with
Applications, 12(1), 11–20.

Metz, C. (1978). Basic principles of ROC analysis. Seminars in Nuclear
Medicine, VIII(4), 283–298.

Metz, C. (1989). Some practical issues of experimental design and data
analysis in radiological ROC studies. Investigative Radiology, 24, 234–
245.

Michalski, R., Mozetic, I., Hong, J., & Lavrac, H. (1986). The multi-purpose
incremental learning system AQ15 and its testing application to three
medical domains. In Proceedings of the Fifth National Conference on
Artificial Intelligence (pp. 1041–1045). Menlo Park, CA: AAAI Press.

Miller, D., & Uyar, H. (1997). A mixture of experts classifier with learning
based on both labeled and unlabeled data. In M. Mozer, M. Jordan, &
T. Petsche (Eds.), Advances in neural information processing systems
(Vol. 9). Cambridge, MA: MIT Press.

mlj02.tex; 21/04/2002; 15:56; p.41

42 Maloof, Langley, Binford, Nevatia, and Sage

Mohan, R., & Nevatia, R. (1989). Using perceptual organization to extract
3-D structures. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(11), 1121–1139.

Mossman, D. (1999). Three-way ROCs. Medical Decision Making, 19,
78–89.

Nayar, S., & Poggio, T. (Eds.). (1996). Early visual learning. New York,
NY: Oxford University Press.

Noronha, S., & Nevatia, R. (1997). Detection and description of buildings
from multiple aerial images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR ’97) (pp. 588–594).
Los Alamitos, CA: IEEE Press.

Osuna, E., Freund, R., & Girosi, F. (1997). Training Support Vector Ma-
chines: An application to face detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR ’97)
(pp. 130–136). Los Alamitos, CA: IEEE Press.

Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T., & Brunk, C. (1994).
Reducing misclassification costs. In Proceedings of the Eleventh In-
ternational Conference on Machine Learning (pp. 217–225). San
Francisco, CA: Morgan Kaufmann.

Pomerleau, D. (1996). Neural network vision for robot driving. In S. Nayar
& T. Poggio (Eds.), Early visual learning (pp. 161–181). New York,
NY: Oxford University Press.

Pope, A., & Lowe, D. (1996). Learning probabilistic appearance models
for object recognition. In S. Nayar & T. Poggio (Eds.), Early visual
learning (pp. 67–97). New York, NY: Oxford University Press.

Pope, A., & Lowe, D. (2000). Probabilistic models of appearance for 3-D
object recognition. International Journal of Computer Vision, 40(2),
149–167.

Provan, G., Langley, P., & Binford, T. (1996). Probabilistic learning of
three-dimensional object models. In Proceedings of the Image Un-
derstanding Workshop (pp. 1403–1413). San Francisco, CA: Morgan
Kaufmann.

Provost, F., & Fawcett, T. (1997). Analysis and visualization of classifier
performance: Comparison under imprecise class and cost distributions.
In Proceedings of the Third International Conference on Knowledge
Discovery and Data Mining (pp. 43–48). Menlo Park, CA: AAAI
Press.

mlj02.tex; 21/04/2002; 15:56; p.42

Improved Rooftop Detection with Machine Learning 43

Provost, F., Fawcett, T., & Kohavi, R. (1998). The case against accu-
racy estimation for comparing induction algorithms. In Proceedings
of the Fifteenth International Conference on Machine Learning (pp.
445–453). San Francisco, CA: Morgan Kaufmann.

Quinlan, J. (1993). C4.5: Programs for machine learning. San Francisco,
CA: Morgan Kaufmann.

Rowley, H., Baluja, S., & Kanade, T. (1996). Neural network-based face
detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR ’96) (pp. 203–208). Los Alamitos,
CA: IEEE Press.

Sarkar, S., & Soundararajan, P. (2000). Supervised learning of large percep-
tual organization: Graph spectral partitioning and learning automata.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(5), 504–525.

Segen, J. (1994). GEST: A learning computer vision system that recognizes
hand gestures. In R. Michalski & G. Tecuci (Eds.), Machine learning:
A multistrategy approach (Vol. 4, pp. 621–634). San Francisco, CA:
Morgan Kaufmann.

Sengupta, K., & Boyer, K. (1993). Incremental model base updating: Learn-
ing new model sites. In Papers from the the AAAI Fall Symposium
on Machine Learning in Computer Vision: What, Why, and How?
Technical Report No. FS-93-04 (pp. 1–5). Menlo Park, CA: AAAI
Press.

Shepherd, B. (1983). An appraisal of a decision tree approach to image clas-
sification. In Proceedings of the Eighth International Joint Conference
on Artificial Intelligence (pp. 473–475). San Francisco, CA: Morgan
Kaufmann.

Soderland, S., & Lehnert, W. (1994). Corpus-driven knowledge acquisition
for discourse analysis. In Proceedings of the Twelfth National Confer-
ence on Artificial Intelligence (pp. 827–832). Menlo Park, CA: AAAI
Press.

Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science,
240, 1285–1293.

Swets, J., & Pickett, R. (1982). Evaluation of diagnostic systems: Methods
from signal detection theory. New York, NY: Academic Press.

mlj02.tex; 21/04/2002; 15:56; p.43

44 Maloof, Langley, Binford, Nevatia, and Sage

Teller, A., & Veloso, M. (1997). PADO: A new learning architecture for
object recognition. In K. Ikeuchi & M. Veloso (Eds.), Symbolic visual
learning (pp. 77–112). New York, NY: Oxford University Press.

Thompson, M., & Zucchini, W. (1986). On the statistical analysis of ROC
curves. Statistics in Medicine, 18, 452–462.

Turney, P. (1995). Cost-sensitive classification: Empirical evaluation of a
hybrid genetic decision tree induction algorithm. Journal of Artificial
Intelligence Research, 2, 369–409.

Viola, P. (1993). Feature-based recognition of objects. In Papers from the
the AAAI Fall Symposium on Machine Learning in Computer Vision:
What, Why, and How? Technical Report No. FS-93-04 (p. 60–64).
Menlo Park, CA: AAAI Press.

Wagner, R., Beiden, S., & Metz, C. (2001). Continuous versus categorical
data for ROC analysis: Some quantitative considerations. Academic
Radiology, 8, 328–334.

Walpole, R., Myers, R., & Myers, S. (1998). Probability and statistics for
engineers and scientists (6th ed.). Upper Saddle River, NJ: Prentice-
Hall.

Wolpert, D. (1992). Stacked generalization. Neural Networks, 5, 241–259.

Woods, K., Cook, D., Hall, L., Bowyer, K., & Stark, L. (1995). Learning
membership functions in a function-based object recognition system.
Journal of Artificial Intelligence Research, 3, 187–222.

Woods, K., Kegelmeyer, W., & Bowyer, K. (1997). Combination of mul-
tiple classifiers using local accuracy estimates. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(4), 405–410.

Zurada, J. (1992). Introduction to artificial neural systems. St. Paul, MN:
West Publishing.

mlj02.tex; 21/04/2002; 15:56; p.44

