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Abstract. In this paper, we pose a novel research problem for machine learning that
involves constructing a process model from continuous data. We claim that casting
learned knowledge in terms of processes with associated equations is desirable for
scientific and engineering domains, where such notations are commonly used. We also
argue that existing induction methods are not well suited to this task, although some
techniques hold partial solutions. In response, we describe an approach to learning
process models from time-series data and illustrate its behavior in three domains.
In closing, we describe open issues in process model induction and encourage other
researchers to tackle this important problem.
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1. Introduction and Motivation

Many scientific and engineering domains involve continuous variables
that change over time. The increasing availability of data from such
systems presents both an opportunity and a challenge for machine
learning. Successful applications of induction methods hold obvious
benefits, and there exist large literatures on computational methods
for regression and time-series prediction. But however accurate the
predictive models these techniques induce from data, they usually make
little contact with the formalisms and concepts used by scientists and
engineers. As Schwabacher and Langley (2001) have argued, domain
experts will benefit more from knowledge that is cast in communica-

ble form, utilizing notations already familiar to them. And as Pazzani
et al. (2001) have shown, experts in some domains will reject a learning
system’s output, even when very accurate, unless it makes contact with
their prior knowledge.
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Research on discovering numeric laws (e.g., Langley, 1981, Żytkow
et al., 1990, Džeroski & Todorovski, 1993, Washio et al., 2000) addresses
this concern, in that many scientists find equations familiar. However,
although the resulting knowledge generalizes beyond the training data,
it is typically descriptive in that it directly relates observable vari-
ables. In contrast, a model in science and engineering often provides
an explanation which includes variables, objects, or mechanisms that
are unobserved, but that help predict the behavior of the observed
variables. Moreover, explanations often make use of general concepts
or relations that occur in different models. Compare Kepler’s third
law, which relates a planet’s period to its distance from the sun, with
Newton’s theory of gravitation, which introduces a theoretical variable
for gravitational force. Kepler’s model answers a what question about
planetary motion, whereas the latter answers a why question, thereby
providing explanation.

We claim that scientists and engineers often state their explanations
in terms of generic processes from some domain. A process describes
one or more causal relations among system variables. We develop here a
particular class of processes that are represented in terms of differential
equations (for modeling change over time) and algebraic equations (for
modeling instantaneous effects). Each such process may also include
conditions, stated as threshold tests on its input variables, that describe
when it is active. A process model consists of a set of processes that
link observable variables with each other causally, possibly through
unobserved theoretical terms.1

Table I shows a simple process model for a predator–prey rela-
tionship between two protists (microorganisms). In this ecosystem,
Didinium nasutum preys upon Paramecium aurelia. The model in-
cludes three processes that explain the changes in the concentrations of
the two species (nasutum and aurelia, respectively). The first of these
states that the aurelia concentration increases logistically, limited by
the environment’s carrying capacity, while the second process states
that nasutum decays exponentially. The third process explains the
interaction between the two species using a Holling type I response.
That is, the prey population decreases in relation to the size of both
populations and the rate of predation, while the predator population
increases correspondingly, with an additional term reflecting the effi-
ciency of predation (intuitively, the number of predators produced by
consuming one prey). Given initial conditions (e.g., nasutum = 64.67,
aurelia = 276.60), this model can simulate changes in the two species’

1 Our framework can be viewed readily as a quantitative version of Forbus’ (1984)
qualitative process theory, from which we have borrowed many ideas.
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Table I. A quantitative process model of a protist ecosystem with one predator
(D. nasutum) and one prey (P. aurelia). Prey growth is logistic, predator decay is
exponential, and predation is explained using a Holling type I response. The notation
d[X, t, 1] indicates the first derivative of X with respect to t.

model PredatorPrey;

variables aurelia{prey}, nasutum{predator};
observable aurelia, nasutum;

process aurelia growth;
equations d[aurelia, t, 1] = 1.81 ∗ aurelia ∗ (1 − 0.0003 ∗ aurelia);

process nasutum decay;
equations: d[nasutum, t, 1] = −1 ∗ 1.04 ∗ nasutum;

process predation holling 1;
equations d[aurelia, t, 1] = −1 ∗ 0.03 ∗ aurelia ∗ nasutum;

d[nasutum, t, 1] = 0.30 ∗ 0.03 ∗ aurelia ∗ nasutum;

concentrations over time. Note that, as expected, the model predicts
oscillitory behavior, but it does not state this explicitly, as would de-
scriptive laws. For comparison, the model is equivalent to the two
differential equations

ȧ = 1.81 · a · (1 − 0.0003 · a) − 0.03 · a · n

ṅ = −1.04 · n + 0.30 · 0.03 · a · n

where n = nasutum and a = aurelia, which predict the same trajec-
tories over time.

We maintain that process models of the sort in Table 1 occur fre-
quently in science and engineering, and that inducing them from data
is a worthwhile task for machine learning researchers to address. We
can state the task of inductive process modeling as:

• Given: Observations for a set of continuous variables as they change
over time;

• Given: Generic processes that specify causal relations among vari-
ables using conditional equations;

• Given: Constraints on the types of variables involved in each pro-
cess and knowledge about these variables’ types;

• Find: A specific process model that fits the observed data and that
predicts future data accurately.

Note that this formulation distinguishes between the generic processes
given as input and the specific processes in the induced model, which
mention particular variables and parameter values. Later, we will see
that this background knowledge provides important constraints on search
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through the model space and ensures that the resulting models make
contact with concepts familiar to domain scientists.

This paper takes the form of an exploratory research report in the
sense described by Dietterich (1990). Following his advice, we state
clearly a promising new problem for machine learning and explore its
various facets. In the section that follows, we consider some challenges
posed by the problem of inducing quantitative process models. Next we
review a variety of established induction paradigms, concluding that
none can be applied directly to this task, though some hold promising
ideas on which we can build. After this, we describe a candidate ap-
proach to process model induction and illustrate it with some initial
results. Finally, we close by suggesting an agenda for future research on
this important topic. We do not report extensive experimental studies,
but we do present results on a number of domains as evidence for the
generality of both the task and our initial approach to it.

2. Challenges of Inductive Process Modeling

We have claimed that the induction of process models differs from the
tasks typically studied in machine learning. Thus, before proceeding
further, we should review the characteristics that distinguish this task
from traditional induction problems and that pose research challenges.
Some characteristics address aspects of the training data, whereas oth-
ers involve constraints on the nature of acquired knowledge.

Process models are designed to characterize the behavior of dynamic
systems, which may be in equilibrium, over time. The data produced
by such systems differ in a variety of ways from those that arise in most
induction tasks. First, the variables are primarily continuous, since
they represent quantitative measurements of the system under study.
Therefore we must solve a regression task rather than one that involves
learning classifiers. Second, the observed values are not independently
and identically distributed, since those observed at later time steps
depend on those measured earlier. Thus, the data violate an assumption
made by the great majority of available learning algorithms. Finally,
the training data are primarily unsupervised, in that they describe a set
of variables that change over time, with no variable being singled out
for special attention. Such unsupervised learning is generally viewed as
more difficult than learning from supervised data.

We have already noted that process models are explanatory in na-
ture. One can observe some variables as they change over time, but the
processes that cause these changes are not themselves observable, and
multiple processes can interact to produce complex behavior. Moreover,
process models can include theoretical variables that are also unob-
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servable. These characteristics concern the knowledge acquired during
learning, but their presence makes the induction task more complex,
just as the introduction of hidden variables into neural or Bayesian
networks requires additional learning mechanisms. As a result, inducing
process models is a suitable option only for domains that are complex
enough to require such explanatory accounts. Fortunately, this chal-
lenge is offset somewhat by knowledge about generic processes that
can serve as components of candidate models.

Another assumption also makes process model induction more tract-
able than it might be otherwise: the dynamical systems that the models
explain are generally viewed as deterministic. The observations them-
selves may well contain noise, which can complicate matters for this
paradigm as it does for others. However, the framework posits that
processes themselves are always active whenever their conditions are
met and that their equations have the specified effects. Scientists and
engineers often treat the systems they study as deterministic, and we
will operate under the same assumption.

3. Limitations of Existing Approaches

According to Dietterich (1990), an exploratory research paper should
not only define a novel problem, but also show the inability of existing
methods to solve that problem. Thus, we should consider whether any
established learning techniques can handle inductive process modeling.
Our discussion will draw on comments in the previous section about
the distinctive characteristics of this task.

We have argued that methods for equation discovery, although they
generate knowledge in formalisms familiar to scientists, are not suf-
ficient for our task because they produce descriptive summaries of
data rather than explanations in terms of underlying processes. A few
exceptions to this trend exist, such as Bradley et al.’s (2001) work on
constructing differential equation models from existing components,
Todorovski and Džeroski’s (1997) use of context-free grammars for
generating candidate equations, and Koza et al.’s (2001) method for
inferring quantitative metabolic pathways. However, even these efforts
do not combine known generic processes into explanatory models, and
most work on equation discovery is far less relevant.

Mainstream methods for supervised learning fall short on the same
front, in that they can develop accurate predictors but fail to make
contact with explanatory concepts familiar to domain experts. Thus,
widely used algorithms for inducing regression trees (e.g., Breiman
et al., 1984) and multilayer neural networks do not, by themselves,
seem sufficient for inductive process modeling, nor do other schemes
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for predicting continuous variables. This grouping includes techniques
for time-series analysis, such as ARIMA models (e.g., Schneider &
Neumaier, 2001), which are designed to predict accurately one time
step ahead, rather than matching entire trajectories. However, such
methods can prove useful in the overall task, as we will see later with
techniques for equation discovery.

Because we have emphasized the explanatory nature of process mod-
els, we should consider whether explanation-based learning (e.g., Mitch-
ell et al., 1986) lends itself to constructing them. This paradigm also
assumes the use of background knowledge to account for observations,
but nearly all research within it has dealt with classification or problem-
solving tasks, rather than with predicting continuous variables. More-
over, the typical formulation assumes that the training data are super-
vised, whereas inductive process modeling deals primarily with obser-
vational data in which no variable is treated as special. Most important,
explanation-based methods are generally deductive in nature, and we
presumably need an inductive approach that does not rely on fixed
axioms. DeJong’s (1995) work on explanation-based learning for motor
control comes closer to our needs, but the paradigm as a whole seems
poorly suited.

Research on explanation-based learning gave birth to another move-
ment, often referred to as theory revision, that seems a better match
to our problem in that it combines background knowledge with in-
ductive learning. This framework often states domain theories as Horn
clause programs, and the revision methods typically employ operators
for adding and removing rules’ conditions, as well as adding and re-
moving entire rules (e.g., Ourston & Mooney, 1990). Moreover, these
theories usually incorporate nonterminal symbols that one can view
as theoretical terms. However, the paradigm assumes that one has
an explanatory model at the outset, rather than constructing it from
available components. More importantly, theory-revision methods em-
phasize the learning of classifiers from supervised training data rather
than dealing with unsupervised regression. Thus, this approach also
seems like a poor match, although we will return to it when we discuss
open issues.

Inductive logic programming (e.g., Lavrač & Džeroski, 1994) fares
somewhat better on the task of learning process models. This frame-
work takes advantage of background knowledge, stated as Horn clauses
and ground literals, to learn from training cases. The resulting knowl-
edge is itself cast as a set of Horn clauses, possibly with nonterminal
(i.e., theoretical) symbols, and thus can have an explanatory charac-
ter. As usually practiced, inductive logic programming uses supervised
learning for classification tasks and often generates descriptive rules
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with no intermediate concepts. Moreover, the research emphasis has
been on generating logical structures rather than numerical ones. How-
ever, Garrett et al. (in press) have used this approach to infer metabolic
pathways that involve biochemical processes and unobserved entities,
making them similar to our own models. Thus, inductive logic pro-
gramming holds promise as an approach to process model construction,
although both the performance and learning methods must be extended
to support numeric equations and continuous time.

Since hidden Markov models (e.g., Poritz, 1988) can describe sys-
tems that change over time, we should also evaluate their relevance
to our learning problem. The states in such models are unobservable,
which gives them an explanatory flavor, but typically only one state
can be active at a time, whereas any number of the processes in our
framework can be active simultaneously. Furthermore, a hidden Markov
model requires explicit links that specify which states can follow each
other, rather than letting this behavior emerge from a set of processes.
Finally, the probabilistic assumptions of Markov models are unneces-
sary for scientific and engineering domains that are typically viewed as
deterministic in nature.

A final approach involves learning ‘dynamic Bayesian networks’,
which characterize how the values of variables at one time step influence
their values at the next step (e.g., Ghahramani, 1998). Such models
encode the probabilistic analog for sets of differential equations, but
they do not organize these equations into processes. Also, work in
this paradigm has employed discrete variables and, as with hidden
Markov models, the probabilistic representation seems inappropriate
for deterministic process models. The situation for dynamic Bayes nets
and hidden Markov models resembles that with logic programs, in that
one might adapt them to support induction of process models, but they
bring unnecessary assumptions and machinery to the task.

In summary, no existing learning paradigms seem appropriate for
the problem of inducing process models, which indicates the need for
new methods. However, many of the responses to other induction tasks
will prove relevant to challenges that arise when constructing such
explanatory models, as we will later see.

4. Inducing Process Models

Our primary aim here is to characterize and promote the problem of
learning process models. To this end we have built a baseline system
that provides evidence for the feasibility of the task and that can serve
as a nontrivial comparator for future work. As with any induction sys-
tem, ours can be described in terms of the formalism for communicating
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the resulting models,the performance element that uses them, and the
learning method that constructs the models from data.

4.1. Representing Processes and Models

We have already seen one example that involves a three-process model
for a protist ecosystem. To reiterate, a process model specifies a set
of processes that characterize quantitative relations among a set of
observed, and possibly unobserved, variables. Each process includes
zero or more conditions under which it is active, along with at least
one causal equation that characterizes the influence that one or more
variables exert on another. Although the processes in a given model are
unordered and operate in parallel, we can organize them into a causal
graph that equates the outputs of some processes with the inputs of
others (Iwasaki & Simon, 1994).

Table II presents a set of processes for population dynamics, which
concerns changes in species’ population levels over time (Murray, 2004).
The table contains generic processes that serve as background knowl-
edge for learning; unlike specific processes, these do not commit to
particular variables or parameter values, but they can indicate con-
straints on them. For example, the process for exponential growth states
that its variable S must have type species and that its equation’s coef-
ficient gr must fall between zero and two. The background knowledge
also contains a hierarchy of variable types that stem from the base type
number. Note that processes in this domain include no conditions, so
they are continuously active.

In addition to the generic processes, an induction system needs a
set of typed variables and training data for those declared observable.
For example, to construct the model in Table I, the program would
require nasutum to have type predator and aurelia to have type prey.
Combined with the set of generic processes, this information defines
the space of model structures that the induction system will search.
Since both variables are observable, two trajectories must be supplied.
These data provide a means both to direct the search for parameters
and to evaluate the instantiated process model.

4.2. Making Predictions with Process Models

Any induction system requires some performance element that can
utilize the learned knowledge. In this case, we require an interpreter
that can generate a predicted trajectory for each observable variable
by carrying out forward simulation of a quantitative process model. To
this end, we have implemented a module that invokes an established
method (Cohen & Hindmarsh, 1996) for solving first-order differential
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Table II. Five generic processes for population dynamics with constraints on their
variables and parameters. The variable type constraints are denoted in braces fol-
lowing the local name, while parameter bounds are specified within brackets. The
notation d[S, t, 1] indicates the first derivative of S with respect to t.

library predpreysmall;

generic process logistic growth;
variables S{species};
parameters gr[0, 3], ic[0, 1];
equations d[S, t, 1] = gr ∗ S ∗ (1 − ic ∗ S);

generic process exponential growth;
variables S{species};
parameters gr[0, 2];
equations d[S, t, 1] = gr ∗ S;

generic process exponential decay;
variables S{species};
parameters dr[0, 2];
equations d[S, t, 1] = −1 ∗ dr ∗ S;

generic process holling 1;
variables S1{prey}, S2{predator};
parameters ar[0, 1], ef [0, 1];
equations d[S1, t, 1] = −1 ∗ ar ∗ S1 ∗ S2;

d[S2, t, 1] = ef ∗ ar ∗ S1 ∗ S2;

generic process holling 2;
variables S1{prey}, S2{predator};
parameters ar[0, 1], ef [0, 1], ht[0, 1];
equations d[S1, t, 1] = −1 ∗ ar ∗ S1 ∗ S2/(1 + ht ∗ ar ∗ S1);

d[S2, t, 1] = ef ∗ ar ∗ S1 ∗ S2/(1 + ht ∗ ar ∗ S1);

type species subtypeof number;
type predator subtypeof species;
type prey subtypeof species;

equations along with simple arithmetic operations for handling alge-
braic equations. For this purpose, we must specify initial values for
each observable variable, all values for exogenous variables, and the
size of the time step, which determines the temporal resolution of the
simulation.

Such an approach suffices for predicting the effects of individual
differential equations, but a process model may involve chains of such
equations. Thus, for each process P , the performance element solves the
associated instantaneous and differential equations for the current time
step to determine new values for P ’s output variables, uses these values
to solve the equations associated with any processes that occur in the
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Table III. Possible mappings of the generic processes from the population dynamics
domain when given the variables nasutum of type predator and aurelia of type
prey.

logistic growth: S → aurelia exponential decay: S → nasutum

logistic growth: S → nasutum holling 1: S1 → aurelia

exponential growth: S → aurelia S2 → nasutum

exponential growth: S → nasutum holling 2: S1 → aurelia

exponential decay: S → aurelia S2 → nasutum

next step on the causal chain, and so on, until reaching the chain’s
final variables. The interpreter utilizes only active processes (i.e., those
whose conditions are met) on each time step. When multiple active
processes influence the same variable, the system makes the simplifying
assumption that their effects are additive. We will see examples of the
trajectories produced by the module in the next section.

4.3. Constructing a Model from Components

Once provided with background knowledge, which we assume comes
from a domain expert, and time-series data about the quantitative
variables one wants to explain, an induction system can carry out
constrained search through the space of process models. We have im-
plemented such a system, called IPM, wherein the search mechanism
operates in three distinct stages.2

The first step involves finding all ways to instantiate the known
generic processes with specific variables. For each generic process, IPM
checks every possible assignment of observable variables to generic vari-
ables mentioned in the process, retaining only assignments that satisfy
the type constraints. Given the variables aurelia and nasutum, along
with the generic processes from Table II, the program finds the eight
mappings indicated in Table III. From this point, IPM must determine
which processes to use and what values their associated parameters
should take.

In the second stage, the program uses subsets of the collection of
partially instantiated processes to form generic models, each of which
specifies an explanatory structure. To be retained as a candidate model,
a set of processes must satisfy certain user-specified and system-defined
constraints. In particular, the user indicates the minimal and maximal

2 IPM serves as one component of Prometheus, an integrated environment for
process modeling that we have described elsewhere (Bridewell et al., 2004).
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Table IV. A generic model from the predator–prey domain wherein variables are
mapped but parameters remain constrained by their bounds.

process logistic growth;
parameters gr[0, 3], ic[0, 1];
equations d[aurelia, t, 1] = gr ∗ aurelia ∗ (1 − ic ∗ aurelia);

process exponential decay;
parameters dr[0, 2];
equations d[nasutum, t, 1] = −1 ∗ dr ∗ nasutum;

process holling 1;
parameters ar[0, 1], ef [0, 1];
equations d[aurelia, t, 1] = −1 ∗ ar ∗ aurelia ∗ nasutum;

d[nasutum, t, 1] = ef ∗ ar ∗ aurelia ∗ nasutum;

size of the model in terms of processes and states the number of times
a generic process may be instantiated within that model.3 IPM also
enforces a number of constraints that define a valid model. First, ex-
ogenous variables must remain unexplained by the model, meaning
that they cannot be influenced by any process. Second, all observable
variables must be explained by the model in the sense that at least
one process affects their values. Third, theoretical variables connected
to the model must serve as both input and output to one or more
processes. This last constraint ensures that the values of these terms
are defined before use and that such terms affect the model’s behav-
ior. Table IV shows one valid generic model built from the mapped
processes of Table III.

The third step selects parameter values for each generic model using
two optimization strategies. At the core of this stage, IPM employs a
nonlinear least-squares algorithm (Bunch et al., 1993) that carries out
a second-order gradient descent search through the parameter space.
For the first strategy, the program guides this optimization routine by
simulating the full set of trajectories from initial values and providing
information about the residuals for each observable variable. To avoid
entrapment in local minima, IPM performs a series of restarts from
random points in the parameter space.

When all the variables are observable, the second strategy aug-
ments the above search with a second strategy that uses teacher forcing

(Williams & Zipser, 1989). Rather than carrying out a full simulation
from initial values, this technique estimates parameters solely from

3 Multiple variable mappings may apply to a generic process, and each of these
becomes a candidate component. Note that a each such component can occur only
once in a given model structure.
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their ability to predict the values at time i + 1 from those at time
i. Given n samples, the program performs n − 1 one-step simulations,
forwarding the information about the residuals to the same nonlinear
least-squares algorithm mentioned above. Since local minima can still
cause problems, IPM restarts the teacher forcing approach at multiple
randomly selected points. The system then uses the set of parameters
that produce the lowest error to seed one invocation of the first strategy.

From among the results for each optimization run, IPM selects the
best set of parameters according to a fitness measure. The system cur-
rently uses the sum of squared error for this step (both standard and
normalized versions), but measures such as the correlation coefficient
would also be reasonable. The parameters that yield the lowest error
become part of the fully instantiated version of each generic model, as
shown in Table I.

Notably, IPM also lets the user treat the initial values of the sim-
ulation as parameters. Often scientists and engineers can give only
plausible ranges or approximate values for theoretical variables. In these
cases, allowing variability in the initial values can help the program
achieve a better fit to the observed trajectories. Moreover, noise can
exist in the measurements of observable variables, so the system can
also treat these values as parameters. Upon completion of its search,
IPM returns a set of tuples, sorted by error scores, each containing a
model and its associated initial values.

5. Applications and Results

In previous sections, we characterized the task of inductive process
modeling and described one approach to it. In this section, we report
results for our current implementation on three scientific domains. In
the first we apply an extension of the generic processes given in Table II
to predator–prey data. The second domain centers on the population
dynamics for the aquatic ecosystem of the Ross Sea. The final model-
ing task involves the dynamics of Ringkøbing Fjord as its water level
responds to various environmental conditions. In each case, we discuss
both the inputs to IPM and the models it produces in each case. We
judge success based on predictive accuracy, model comprehensibility,
and visual fit to the observations.

5.1. Predator–Prey Relations

A key aspect of many ecosystem models is the relationship between
predators and their prey. For instance, researchers believe that such
interactions drive the evolution of the species involved, leading to the
development of defense mechanisms in the prey and corresponding
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Table V. Additional generic processes for the predator–prey domain. Variable type
constraints are denoted in braces following the local name, while parameter bounds
are specified within brackets. The notation d[S, t, 1] indicates the first derivative of
S with respect to time.

generic process ratio dependent 2;
variables S1{prey}, S2{predator};
parameters ar[0, 1], ef [0, 1], ht[0, 1];
equations d[S1, t, 1] = −1 ∗ ar ∗ S1 ∗ S2/(S2 + ht ∗ ar ∗ S1);

d[S2, t, 1] = ef ∗ ar ∗ S1 ∗ S2/(S2 + ht ∗ ar ∗ S1);
generic process ivlev;
variables S1{prey}, S2{predator};
parameters ar[0, 1], ef [0, 1], sat[0, 1];
equations d[S1, t, 1] = −1 ∗ S2 ∗ sat ∗ (1 − e(−ar∗S1));

d[S2, t, 1] = ef ∗ S2 ∗ sat ∗ (1 − e(−ar∗S1));

generic process hassell varley 1;
variables S1{prey}, S2{predator};
parameters ar[0, 1], ef [0, 1], mu[0, 1];
equations d[S1, t, 1] = −1 ∗ ar ∗ S1 ∗ S2−mu ∗ S2;

d[S2, t, 1] = ef ∗ ar ∗ S1 ∗ S2−mu ∗ S2;
generic process deangelis beddington;
variables S1{prey}, S2{predator};
parameters ar[0, 1], ef [0, 1], ht[0, 1], mi[0, 1];
equations d[S1, t, 1] = −1 ∗ ar ∗ S1 ∗ S2/(1 + ht ∗ ar ∗ S1 + mi ∗ S2);

d[S2, t, 1] = ef ∗ ar ∗ S1 ∗ S2/(1 + ht ∗ ar ∗ S1 + mi ∗ S2);

generic process crowley martin;
variables S1{prey}, S2{predator};
parameters ar[0, 1], ef [0, 1], ht[0, 1], mi[0, 1];
equations d[S1, t, 1] = −1 ∗ ar ∗ S1 ∗ S2/((1 + ht ∗ ar ∗ S1) ∗ (1 + mi ∗ S2));

d[S2, t, 1] = ef ∗ ar ∗ S1 ∗ S2/((1 + ht ∗ ar ∗ S1) ∗ (1 + mi ∗ S2));

adaptations in the predators. In addition, understanding predation
translates into knowledge about sustainability, which can determine the
effects of species introduction or removal upon a particular ecosystem.
Research in this area effectively began in the last century through the
work of Lotka and Volterra, as Berryman (1992) has recounted.

The Lotka–Volterra model of predation assumes three fundamental
processes: prey growth, predator decay, and predation. The original
formulation can be stated as

Ḟ = γF − αFC

Ċ = εαFC − δC,

where F represents the prey population and C the predator population.
Here the growth rate, γ, controls the exponential increase of prey over
time, whereas the decay rate, δ, similarly specifies the natural decrease
of the predator population. Predation correspondingly decreases the
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Figure 1. Trajectories for two predator–prey data sets. Samples to the left of the
vertical lines were not used because they appeared to involve different regimes.

number of prey while increasing the number of predators based upon
the density of both populations and a fixed attack rate, α. An efficiency
factor, ε, corresponds to the ratio of predators produced with respect to
the number of prey consumed, so smaller values slow predator growth.
Since the introduction of this model, ecologists have suggested a variety
of alternative forms with different growth and predation processes.

For our experiments, we combined the partial library in Table II
with the generic processes in Table V and others to define two types of
growth, eleven types of predation, and one type of decay. Both exponen-
tial growth and decay come from the Lotka–Volterra model, whereas
logistic growth restates the Malthus–Verhulst equation. We took the
predation processes from Jost and Ellner (2000), who place them into
two general categories. The Holling and Ivlev processes treat predation
solely as a function of prey density, while the rest also incorporate the
predator density. No single form of these processes characterizes all the
predatory interactions hypothesized by ecologists, so the explanation
of an observed system requires a search through the space of model
structures in addition to parameter fitting.

We provided IPM with the expanded set of generic processes along
with data for the protist ecosystem introduced in Section 1. These data,
originally collected by Vellieux (1979), consist of twice daily recordings
of the densities of both Didinium nasutum and Paramecium aurelia.4

We selected two data sets that consist of 71 and 52 recordings each.
Visual inspection of the data indicated irregularities during the first few
days of both experiments, which suggested that different regimes were
operating at those times. As a result, we truncated the data sets to 54

4 Jost and Ellner (2000) extracted the data from the original paper and made
them publicly available.
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Figure 2. Simulated and observed trajectories for two predator–prey data sets. IPM
induced the corresponding models from the truncated trajectories shown in Figure 1.

and 28 samples, respectively, concentrating our attention on the more
regular, though still noisy, sections of the trajectories. Figure 1 shows
the full trajectories, along with lines that indicate points of truncation.

To estimate the predictive accuracy of the models produced by IPM,
we modified k-fold cross validation to make it applicable to time-series
data. Given a data set consisting of temporal trajectories, we remove
the initial time point t0 and generate the k subsets by filling them
with the remaining data selected uniformly at random and without
replacement, as in standard cross validation. We then create the k
folds, prepending t0 to each training set. After IPM produces a model,
it simulates the trajectories beginning at t0 and effectively overlays
each trajectory onto the appropriate test set. For each variable, the
program reports both the sum of the squared error and the coefficient
of determination (r2) using the predicted and observed values.

We carried out ten-fold cross validation with IPM on both of the
Vellieaux data sets independently. In each case, we told the program
to search for models with three or fewer processes. The size limitation
stems from domain knowledge about the nature of predation; that is, an
explanatory model would typically include one process for each of prey
growth, predator loss, and predatory interaction. These restrictions
result in a model space that includes 470 different structures, all of
which respect the structural constraints imposed by IPM.

Running the program on the data in Figure 1(a) resulted in a cross-
validated r2 of 0.59 for both variables, while giving it the data from
Figure 1(b) yielded an r2 of 0.90 for aurelia and 0.84 for nasutum.
Training IPM over the complete sets of data yielded the trajectories
shown in Figure 2, and led to slightly higher coefficients of determina-
tion. Notice that the relatively steep peaks in these data sets amplify
the effects of even a slight phase shift, which results in lowered scores.
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However, the simulated trajectories match the shape and periodicity of
the observed values quite well.

Both models responsible for the trajectories in Figure 2 have one
process for each of growth, loss, and predation, but they differ slightly
in their functional forms. For instance, although the growth rate is
roughly the same in both cases, the model for Figure 2(a) expresses
growth as a logistic function that contrasts with the exponential growth
present in the second model. The predation processes also differ, but the
functional forms are virtually identical, with the model for Figure 2(b)
introducing a very slight influence by the predator density. In general,
the models were comprehensible in form, accurate in terms of r2, and
close in visual fit to the data.

5.2. The Ross Sea Ecosystem

Although studying isolated pairs of species can provide useful informa-
tion about population dynamics, most ecosystems comprise complex
interrelationships among multiple species and energy sources. In these
environments, processes such as growth and loss exhibit more compli-
cated forms. In particular, remineralization, which replenishes crucial
nutrients, results from organism decay, while the availability of various
energy sources may limit species growth. To aid our task, we worked
directly with an ecologist to determine the required knowledge for
developing a mechanistic model of an aquatic ecosystem.

Table VI presents a portion of the knowledge derived from our col-
laboration represented as a set of generic processes that relate nutrients,
light, animals, and plants. Here the exponential loss process transforms
dead organisms into a residue that is remineralized, thereby replen-
ishing key nutrients. Plants (p species) absorb the available nutrients
that, along with the amount of light, limit their growth. Additionally,
animals (z species) graze on the plants at a rate determined by one
of three processes (e.g., ivlev rate). Light is exogenous and system-
wide parameters are treated as variables with type r rate, n const, and
r const.

We used an extended set of the processes in Table VI to develop
a model of phytoplankton growth in the Ross Sea—an environment
that holds particular interest for ecologists (e.g., Arrigo et al., 2003)
both for its relative simplicity and for the size of its phytoplankton
blooms. We had data consisting of 188 daily measurements of nitrate,
ice, and phytoplankton concentrations that cover two separate bloom-
ing seasons. Because ice in the ocean reduces the light available to the
phytoplankton, we combined the measurements of ice concentration
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Table VI. A partial set of generic processes for an aquatic ecosystem. Variable types
that are not explicitly defined are direct subtypes of number.

generic process remineralization;
variables N{nutrient}, REM{r rate}, RES{residue}, NtoC{n const};
equations d[N, t, 1] = REM ∗ NtoC ∗ RES;

d[RES, t, 1] = −1 ∗ REM ∗ RES;

generic process nutrient absorbtion;
variables N{nutrient}, GR{phyto growth}, P{phyto}, NtoC{n const};
equations d[N, t, 1] = −1 ∗ NtoC ∗ GR ∗ P ;

generic process growth limitation;
variables GR{phyto growth}, RMAX{r const}, NR{n rate}, LR{l rate};
equations GR = RMAX ∗ NR ∗ LR;

generic process nutrient availability;
variables NR{n rate}, N{nutrient};
parameters r[0, 10];
equations NR = N/(N + r);

generic process light availability;
variables LR{l rate}, L{light};
parameters r[0, 100];
equations LR = L/(L + r);

generic process grazing;
variables P{phyto}, Z{zoo}, R{residue},G{zoo growth};
parameters r[0, 1];
equations d[P, t, 1] = −1.0 ∗ G ∗ Z;

d[R, t, 1] = r ∗ G ∗ Z;
d[Z, t, 1] = (1 − r) ∗ G ∗ Z;

generic process ivlev rate;
variables G{zoo growth}, P{phyto};
parameters r[0, 10], k[0, 10];
equations G = k ∗ (1 − e(−1∗r∗P ));

type phyto subtypeof species;
type zoo subtypeof species;
type phyto growth subtypeof growth rate;
type zoo growth subtypeof growth rate;

with the light signal to create a single exogenous variable that captures
the total light entering the system.

In addition to the measured variables, we introduced several the-
oretical variables from ecology that could help explain the observed
behaviors. For example, we told IPM to consider models that include
zooplankton concentration even though we did not know whether such
grazers played a meaningful role. We also included various terms, such
as phytoplankton’s growth rate, that correspond to concepts in current
ecological theory.
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We ran IPM on the two Ross Sea data sets, using the modified
version of ten-fold cross validation discussed earlier, to evaluate its gen-
eralization accuracy. Since models with more than nine processes would
have to include multiple characterizations of the grazing rate (i.e., more
than one of ivlev rate, monod rate, and modified monod rate), we used
this as an upper bound on their size. The resulting structure space
consisted of 2035 different structures.

The r2 values for the first year of data were 0.87 for the phytoplank-
ton concentration and 0.72 for nitrate, and those for the second year
were similar, with an r2 of 0.78 for phytoplankton and 0.72 for nitrate.
As with the predation data, we also ran IPM on the complete data
sets to generate models. Figure 3 shows their corresponding trajecto-
ries along with the original observations. As expected, the scores were
somewhat higher for these models, with r2 above 0.92 for all variables.

The models produced by IPM for the two years differed noticeably
in their form. The model for the first year suggests that phytoplankton
growth is limited primarily by light and that zooplankton play the
primary role in the culling of the population. The model for the sec-
ond year suggests that nitrate plays the growth-limiting role and that
zooplankton contribute to phytoplankton loss. In this second model,
the zooplankton population grows much more slowly than in the first,
which corresponds to our domain expert’s observation that the size of
their presence in the Ross Sea is anomalously low (Tagliabue & Arrigo,
2003). However, the abundance of nitrate in the environment favors
the light-limited growth from the model for the first year. In fact, the
phytoplankton require other nutrients, such as phosphorous and iron,
that are also plausible limiting factors. Overall, the models had excel-
lent quantitative and visual fits, and their comprehensibility allowed
the development of meaningful hypotheses about the ecosystem.

5.3. The Ringkøbing Fjord

For our third modeling task, we focused on water-level variation in
Ringkøbing Fjord, a shallow estuary on the Danish west coast. Here
the water level depends on three distinct aspects of the environment:
the fresh water supply, the water exchange with the North Sea, and the
local wind currents. The first two factors dominate the variation in the
level, with the second being controlled through a 14 part gate. However,
westerly wind currents also cause a rise in the level measured at the
gate. Accurate modeling of the influences on estuary height would be
useful in a control system for the fjord’s gate.
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Figure 3. Simulated and observed trajectories of phytoplankton (µg/L) and nitrate
(µmol/L) concentrations for two successive years in the Ross Sea.

This domain differs from the two ecological cases in that we have a
partial explanation of variation in fjord height:

ḣ =
f(a)

A
(hsea − h + h0) +

Qf

A
+ g(Wvel,Wdir) .

Here, the water level in the estuary, h, changes at a rate determined
by some function of the number of open gate parts, f(a), divided
by the surface area of the fjord, A. When the gates are opened, the
difference between the water level in the open sea, hsea, h, and a
constant measurement error, h0, influence h. Additionally, fresh water
accumulates in the estuary, which causes an increase of Qf/A, and the
velocity and direction of the wind, Wvel and Wdir, alter the water level
according to some unknown function g(·). All of the variables except
h and h0 are measured and considered exogenous to the model. Thus
IPM’s induction task consists of identifying which functions for f(·)
and g(·) most accurately model the change in the observed water level.

Table VII lists 5 of the 16 candidate processes provided to IPM as
background knowledge, wherein all variable types are direct subtypes
of number. The gate-forcing functions fill the role of f(·), specifying the
magnitude of the effect produced by opening one or more sections of the
gate. The wind-forcing functions supply forms for g(·) and vary based
on their use of the direction and velocity of the wind. For instance,
some forms used the cosine and sine of the direction to capture the
influences of the wind’s other components.

We ran IPM on a data set that consisted of 900 hourly samples
from the Ringkøbing Fjord, again using ten-fold cross validation. Each
model could contain at most three processes to account for the influence
of gate openings and wind gusts on the fjord’s water level. This size
limitation resulted in a search space containing 696 different structures.

ml.tex; 29/08/2005; 17:06; p.19



20 Langley, Todorovski, Bridewell, and Džeroski

Table VII. A set of generic processes for modeling the Ringkøbing Fjord. Variable
types not explicitly defined are direct subtypes of number.

generic process gate influence 0;
variables GI{gate influence};
parameters r[−100000, 100000];
equations GI = r;

generic process gate influence 1;
variables GI{gate influence}, GO{gate open};
parameters r[−100000, 100000];
equations GI = r ∗ GO;

generic process wind forcing 0;
variables WI{wind influence};
parameters r[−100000, 100000];
equations WI = r;

generic process wind forcing 1d sin;
variables WI{wind influence}, WD{wind direction};
parameters r[−100000, 100000];
equations WI = r ∗ sin(WD ∗ 3.14159/180);

generic process wind forcing 2dv sin;
variables WI{wind influence}, WD{wind direction}, WV {wind velocity};
parameters r[−100000, 100000];
equations WI = r ∗ WV ∗ cos(WD ∗ 3.14159/180);

As an additional constraint, we hand-coded information about mutu-
ally exclusive processes that further reduced the search space to 529
structures.

The models generated by IPM fared worse on these data than on the
data from the previous domains. The resulting r2 value for the water
level was 0.39, which compares well to the value of 0.43 reported by
Todorovski (2003), who both used more samples for his experiments
and explored models of greater arithmetic complexity. Upon closer
examination of the results we found that the model produced by one
of the folds displayed erratic behavior, as if the system were thrown
into a different regime as shown in Figure 5. Removing this fold from
consideration results in an r2 score of 0.66, which is considerably better
than the original outcome.

Training IPM over all 900 samples yields a model with an r2 of 0.73.
Figure 4 shows the resulting trajectory along with the observed data.
The model itself consists of one gate-forcing process that defines f(·),
and two wind-forcing processes for g(·) that employ both the direction
and velocity of the wind. Most importantly, this simple and plausible
structure provides a close fit to the training data in both visual and
quantitative terms.
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Figure 4. Simulated versus observed trajectories of the water level in Ringkøbing
Fjord.

6. A Proposed Research Agenda

Although our initial results with IPM suggest the viability of inducing
process models from observational data, they leave many questions
unanswered. Before closing, we should discuss some issues that fu-
ture work in the area should address and consider some promising
approaches that should be explored within this research agenda.

6.1. Representation

Our initial foray into process modeling uses a language of somewhat
limited scope that suggests numerous extensions. For instance, scien-
tists often organize their models in terms of systems and subsystems
to increase manageability. Likewise, processes may be decomposed into
subprocesses, thereby creating a behavioral hierarchy that complements
a scientist’s structural one. In the same vein, scientists often organize
related properties into groups that belong to particular objects within
the system. Since the task of inductive process modeling includes the
development of comprehensible models as a primary goal, researchers
should investigate methods of incorporating these common forms of
knowledge organization into the modeling language.
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Figure 5. A trajectory produced by IPM for one cross-validation fold. Notice that
after roughly eight days, the simulated trajectory diverges considerably as if the
system were forced into a different regime.

Along with structural extensions to the representation, future work
should explore methods for specifying and learning models with vary-
ing degrees of certainty. In particular, a model might consist of both
quantitative and qualitative processes (Forbus, 1984), which use propor-
tionalities to describe relations between variables. In this framework,
exponential and logistic growth would map onto a single qualitative
process stating that a population’s growth rate is proportional to its
size. Such models are appropriate for domains like molecular biology,
where scientists often state their knowledge in qualitative form. More-
over, qualitative processes generally have fewer effective parameters
than quantitative ones, which makes them useful for situations with
few observations. Many issues that arise with quantitative models also
occur with their qualitative analogs, so we also need work on this front.

6.2. Induction

In addition to dealing with representational issues, we also need re-
search that addresses the traditional problems of model robustness
and search efficiency. Overfitting the training data can arise in nearly
every learning task, and we need ways to guard against this tendency,
especially as we develop algorithms that generate more complex pro-
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cess models. One avenue would examine analogs to methods that have
proven successful in other induction paradigms. These include tech-
niques for early halting in decision-tree construction using minimum
description length and methods for postpruning using cross validation.
Other techniques include ensemble methods like bagging, though this
would require an adaptation of bootstrap sampling (Efron & Tibshi-
rani, 1993) to handle time-series data and a means for generating
a single, comprehensible model from the ensemble. In addition, re-
searchers should explore other defenses against overfitting specific to
process models.

While experimenting with IPM, we noticed that over 99% of the
system’s runtime was spent on parameter estimation, which suggests
another avenue of research. Our current routines use variants of unin-
formed, gradient descent search. In contrast, search through the space
of model structures relies heavily on domain knowledge, so it seems
reasonable that one could use similar information to guide parameter
estimation. For instance, our conversations with scientists indicate that
they concentrate more on the high-level features of the trajectories
(e.g., peak placement and height) than the residuals. Thus, developing
methods for characterizing these features could lead to a more rational
and more efficient means of tuning a model’s parameters.

Research on inductive process modeling should also lead to ex-
tensions of the general search mechanism. For example, the current
process-level constraints based on variable types could be augmented
by model-level constraints based on processes or process types, so that
a scientist can express both required and mutually exclusive processes.
Knowledge about the dimensional units of variables would also con-
strain model induction, as would the introduction of knowledge that
certain variables are conserved over time. Research should also continue
on Bradley et al.’s (2001) use of qualitative patterns to characterize
certain classes of equations. Other work should develop methods for
learning both conditions on processes and new process forms.

An alternative approach to aiding model induction borrows an idea
from work on theory revision. Rather than constructing a process model
from scratch, one can instead start with a specific model and revise
details to improve its fit to observations. Research on this topic should
explore ways to revise a specific model’s parameters, change the con-
ditions on its component processes, replace these processes with others
that relate the same variables, and even alter the basic structure of
the initial model. Model revision will require the ability to remove
components as well as add them, but otherwise the same issues arise
as in the basic problem of process model induction.

ml.tex; 29/08/2005; 17:06; p.23



24 Langley, Todorovski, Bridewell, and Džeroski

6.3. Evaluation

Finally, future work should identify appropriate methods for evalu-
ating process models. Since the data composing the trajectories fail
to meet the independent and identically distributed assumption made
by many classification algorithms, standard evaluation techniques such
as cross validation must be adapted to better measure model per-
formance. Additionally, dynamic domains can pass through several
operating regimes, which poses additional difficulties for any evaluation
method that samples from the original trajectory. Successful modeling
would require the observation of each of these regimes during training.
Also, some models may contain hidden variables for which the induction
system identifies initial values, but we doubt that these values will apply
to other data sets in which the starting state often differs from that
used for training.

Although these challenges should be met, the evaluation of process
models must move beyond an emphasis on predictive accuracy for the
new paradigm to be useful to scientists. Research must also take into
account considerations of model robustness and explanatory power.
For example, in biological domains, researchers may evaluate a model
based on both its sensitivity to parameters and its ability to match
the general shape of observed trajectories. Such evaluation will require
moving beyond one-to-one comparisons of observations and predic-
tions to incorporate sensitivity analysis and to measure agreement with
meaningful trends in the data.

In pursuing this research agenda, we should follow the accepted
standards for established induction paradigms. Thus, papers should
make explicit claims about a method’s abilities and support them
with experimental or theoretical evidence. Ideally, experimental studies
should include a mixture of natural domains to ensure relevance and
synthetic domains that let one vary dimensions of interest. However,
the focus on familiarity and background knowledge recommends studies
that involve collaborations with domain scientists or engineers, which
remain uncommon in the machine learning literature. Finally, despite
the distinctive nature of process model induction, researchers should
incorporate ideas from other learning tasks and utilize existing methods
as subroutines whenever sensible.

7. Concluding Remarks

In this paper, we proposed a new problem for machine learning re-
searchers that addresses the induction of process models from observa-
tions. We defined this task as the construction of models that combine
known component processes to explain time series or other continuous
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data. We considered the challenges posed by process model induction
and the potential of established techniques to address them, conclud-
ing that it demands research on new methods specialized to process
modeling. We also presented an initial algorithm of this sort and demon-
strated its functionality in multiple domains, after which we outlined a
research agenda for future work on the topic.

Process models constitute a novel representation of knowledge that
differs from the formalisms traditionally used in machine learning.
These models are cast in the same terms as many scientific and en-
gineering models, which should make them more communicable to
practitioners in those fields. However, they have the same modularity
as other formalisms that support learning, and they provide a clear
facility for incorporating domain knowledge into learning mechanisms.
We maintain that research on process model induction will broaden
the scope of machine learning in significant ways, and we encourage
others to join us in exploring computational methods that address this
important new problem.
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