
An Interactive Environment for the Modeling

and Discovery of Scientific Knowledge

Will Bridewell a,1,∗, Javier Nicolás Sánchez a, Pat Langley a,1

aComputational Learning Laboratory, Center for the Study of Language and

Information, Stanford University, Stanford, CA 94305 USA

Abstract

Existing tools for scientific modeling offer little support for improving models in
response to data, whereas computational methods for scientific knowledge discovery
provide few opportunities for user input. In this paper, we present a language for
stating process models and background knowledge in terms familiar to scientists,
along with an interactive environment for knowledge discovery that lets the user
construct, edit, and visualize scientific models, use them to make predictions, and
revise them to better fit available data. We report initial studies in three domains
that illustrate the operation of this environment. Finally, we discuss related research
on modeling formalisms and model revision, as well as suggesting priorities for
additional research.

Key words: Scientific modeling, Interactive knowledge discovery, Model revision

1 Background and Motivation

Models play a central role in science, in that they utilize general laws or theo-
ries to predict or explain behavior in specific situations. Models occur in many
guises, but the more complex the phonemena for which they account, the more
important that they be cast in some formal notation with an unambiguous
interpretation. Moreover, the advent of fields like Earth science and systems

∗ Corresponding author. Tel: +1 (650) 494-3884. Fax: +1 (650) 494-1588.
Email addresses: willb@csli.stanford.edu (Will Bridewell),

jsanchez@cs.stanford.edu (Javier Nicolás Sánchez), langley@isle.org (Pat
Langley).
1 Also affiliated with the Institute for the Study of Learning and Expertise, 2164
Staunton Court, Palo Alto, CA 94306 USA.

ISLE Technical Report



biology, which to attempt to explain the behavior of complex systems in terms
of interacting components, have increased the need for computational tools to
aid model construction and use.

A variety of computational modeling tools already exist, though they are typi-
cally associated with particular fields. For example, STELLA (Richmond et al.,
1987) provides a language and environment for creating quantitative models
in terms of instantaneous and difference equations. This framework has been
adopted widely in the Earth science community for use in ecosystem mod-
els. Similarly, MATLAB (The Mathworks, Inc., 1997) offers an alternative
formalism and environment for specifying quantative models that include in-
stantaneous and differential equations. However, it has proved most popular
in engineering circles to model the behavior of complex artifacts like electric
circuits.

Both these and other environments offer interactive tools that let users vi-
sualize the structure of models, run them as simulations, and examine their
predictions. However, they provide at most limited facilities for using available
data to generate or improve models. That is, current modeling environments
are concerned primarily with the formulation and simulation of models, not
with their discovery. However, as data becomes more available and as the
complexity of models grows, scientists would increasingly stand to benefit
from such computational assistance.

On another front, there has been considerable research on computational
methods for discovering knowledge from data. Much of this work, especially
with the data mining paradigm (e.g., Fayyad et al., 1996), has emphasized for-
malisms like decision trees and logical rules that came originally from the field
of artificial intelligence. These notations are perfectly appropriate for business
applications, since the corporate world has no established ways to represent
domain knowledge, but they are more poorly suited for scientific disciplines,
which have a long history of formalisms for encoding knowledge.

Fortunately, an alternative paradigm, known as computational scientific dis-

covery (e.g. Langley, 2000), has dealt instead with discovery of knowledge cast
as numeric equations and other notations widely used in fields of science and
engineering. Yet research in this framework shares with data mining an em-
phasis on automating the discovery process, so that, with few exceptions, the
developed methods provide little support for interaction with human users.
Another drawback is that these methods typically focus on discovering knowl-
edge from scratch, and thus offer no way to incorporate scientists’ existing
knowledge about a domain.

Clearly, scientists would benefit from computational tools that combine the
advantages of available modeling environments with the strengths of existing

2



Table 1
A quantitative process model of an ecosystem with one predator (D. nasutum) and
one prey (P. aurelia).

model Predator_Prey;

variables aurelia{prey}, nasutum{predator};

observable aurelia, nasutum;

process nasutum_decay;

equations d[nasutum,t,1] = -1 * 1.2 * nasutum;

process aurelia_exponential_growth;

equations d[aurelia,t,1] = 2.5 * aurelia;

process predation_volterra;

equations d[aurelia,t,1] = -1 * 0.1 * aurelia * nasutum;

d[nasutum,t,1] = 0.3 * 0.1 * nasutum * aurelia;

discovery methods. We envision a computational framework that lets a scien-
tist formulate a model, generate predictions from that model, detect anoma-
lies that indicate need for revisions, and semi-automatically alter the model in
response. The scientist would devise the initial model and guide high-level de-
cisions about refinement, with the computer handling predictions, fine-grained
search, and other steps that are easily automated. This view is consistent with
Shneiderman’s (2000) proposal for computational tools that support creative
enquiry.

In this paper we introduce Prometheus, an environment that supports inter-
active knowledge discovery in this manner. As we describe shortly, the system
includes a formalism for specifying models and background knowledge in terms
of quantitative processes, which play a role in many scientific accounts. The
environment includes tools for constructing, visualizing, and editing such pro-
cess models, for utilizing them in predictive simulation, and for constrained
revision of models in response to observations, thus supporting their iterative
refinement. We demonstrate these capabilities in the context of revising in
three domains related to Earth science and microbiology. In closing, we dis-
cuss related work on simulation and discovery, along with directions for future
research in this area.

2 A Language for Process Models

Before a scientist can develop and evaluate scientific models, he must first be
able to represent them. To this end, the Prometheus environment provides
a programming language for specifying formal models. As in other formalisms
for expressing quantitative knowledge, variables and the equations that relate
them play a central role. However, traditional mathematical models leave im-
plicit an important aspect of scientific knowledge—processes—whereas Pro-

3



metheus makes it an explicit part of its models. 2 In fact, the notion of a
process is the central organizing principle in the programming language, so we
refer to programs written in this formalism as process models.

To illustrate the structure of process models, we appeal to a classic example
of predator-prey interaction. Consider an ecosystem consisting of two protist
species Paramecium aurelia and Didinium nasutum, wherein the latter preys
upon the former. Jost and Ellner (2000) give a thorough analysis of this simple
ecosystem using traditional modeling methods. We based our model of the
ecosystem on the same general model structure that guided Jost and Ellner’s
exploration, and we use this model to illustrate the process modeling formalism
and to demonstrate the Prometheus environment.

Table 1 shows a candidate process model for the protist ecosystem. The spec-
ification begins with the model name (here, Predator Prey) and the variables
referenced by the model. This model has two variables, aurelia and nasutum,
that represent the population density of each species in the ecosystem. A type,
used primarily during model revision, follows the variable’s name. In this ex-
ample, aurelia has the type prey and nasutum has the type predator. Both
aurelia and nasutum are also declared observable, meaning that they can be
measured at some point during system activity.

Following the variable definitions come descriptions of the model’s processes.
Here we have three processes that explain how the values of the variables
change over time. Each process has a name (e.g., predation volterra) followed
by an optional set of conditions and one or more differential equations. 3 The
conditions specify when a process is active, while the equations characterize
the process’s effect. Since these processes have no conditions, their associated
equations are always applicable.

The first process, nasutum decay, indicates the death rate of D. nasutum,
in which the left-hand side of the equation specifies a first-order differential
equation for aurelia with respect to t (time) and the right-hand side indi-
cates that density decreases (−1) with a rate of 1.2. The second process,
aurelia exponential growth, defines the growth rate for P. aurelia. The final
process describes changes within both population densities, with the first equa-
tion giving the rate at which D. nasutum consumes P. aurelia and the second
equation specifying the resulting increase in nasutum. When multiple pro-
cesses influence the same variable, the effects are assumed to be additive,
although other combining functions are possible.

2 Our approach is similar, on the conceptual level, to the entity–activity relationship
proposed by Machamer et al. (2000), with variables corresponding to entities and
processes to activities.
3 The modeling language also supports algebraic equations, which we will describe
in a later section.

4



Fig. 1. The graphical display of the process model from Table 1.

Fig. 2. Simulated trajectories for the predator-prey model from Table 1.

3 Visualization and Simulation of Process Models

Once provided with a process model, Prometheus lets the scientist visualize
its causal structure. To illustrate, Figure 1 shows the graphical representation
of the model from Table 1. Prometheus displays processes as rectangles and
variables as ellipses. A thick line between a variable and a process, such as the
one from nasutum to nasutum decay, indicates that the variable appears on
the left-hand side of a differential equation within that process. A thin line, not
seen in this example, signifies that the variable participates as either input or
output of the process. Additionally, when a clear causal ordering exists among
variables, the environment places those variables serving as input to the causal
process to the left of the variables affected by that process. By viewing this
representation, the scientist can see how the variables in the model interact.
He can examine the details of these interactions by clicking the corresponding
process rectangle in the display.

5



In addition to displaying a model’s causal structure, Prometheus can sim-
ulate the model’s behavior. To this end, the scientist must provide the values
for each exogenous variable (i.e., variables that the model should not explain),
initial values for each variable that occurs in the left-hand side of a differen-
tial equation, the length of the simulation, and the size of the time step. In
one such run, we used initial values from Jost and Ellner’s 2000 analysis, 4

setting aurelia and nasutum to 276.60 and 64.67 individuals/mL, respectively.
In addition, we set our simulation length to 70 samples and our sampling rate
to twice per time step. These values correspond with those from the observed
data, which were sampled every 12 hours for 35 days.

After running the simulation, the user can select a variable to view how its
predicted values change over time, as shown in Figure 2. Prometheus draws
a graph for the variable, with the x axis representing time and the y axis
representing the variable itself. As the results indicate, the model produces a
series of sharp peaks wherein the growth of D. nasutum occurs slightly after
the growth of P. aurelia. Once the prey population reaches its peak, there is
a sharp decline that precedes a similar decline in the predator population. To
further evaluate a model, the user can plot the simulated results against the
observed data. For example, Figure 3 shows how the process model’s behavior
compares to the data from Jost and Ellner’s 2000 analysis. In both species the
model produces fewer and sharper peaks than were experimentally observed,
with the peaks being slightly out of synchronization with the observations.

Since the model fails to adequately reproduce the behavior of the ecosystem,
the scientist may want to revise it. To this end, the graphical environment
enables the addition and alteration of variables and processes, additionally
providing full access to the underlying model. Thus the scientist can adjust
the model, view the new causal structure, and simulate the new model’s behav-
ior. Used in this manner, Prometheus serves primarily as a tool for model
visualization and simulation, but it can also serve as an active assistant in the
analysis of data.

4 Revision of Process Models

Before Prometheus can aid in model revision, it must have some knowledge
about the domain. One type of knowledge is generic processes, which serve
as building blocks when adding new processes to the model. Generic pro-
cesses define the form of specific processes within a model and have an analo-

4 These data are available at http://www.pubs.royalsoc.ac.uk/ as an appendix to
Jost and Ellner’s article. For this example, we used the data from their Figure 1(a)
starting at day 10.

6



Fig. 3. Simulated versus observed output for the protozoan ecosystem.

Table 2
Generic processes relevant to the predator-prey model.

generic process logistic_growth;

variables S{prey};

parameters p[0,3], k[0,1];

equations d[S,t,1] = p * S * (1 - k * S);

generic process predation_volterra;

variables S1{prey}, S2{predator};

parameters a[0,1], b[0,1];

equations d[S1,t,1] = -1 * a * S1 * S2;

d[S2,t,1] = b * a * S1 * S2;

generic process predation_holling;

variables S1{prey}, S2{predator};

parameters a[0,1], b[0,1], c[0,1];

equations d[S1,t,1] = -1 * a * S1 * S2/(1 + c * a * S1);

d[S2,t,1] = b * a * S1 * S2 / (1 + c * a * S1);

generic process exponential_growth;

variables S{prey};

parameters b[0,2];

equations d[S,t,1] = b * S;

generic process exponential_decay;

variables S{species};

parameters a[0,2];

equations d[S,t,1] = -1 * a * S;

gous representation. Table 2 shows five generic processes relevant to modeling
predator-prey interaction. Each generic process consists of five components:
a name, a set of variables, a set of parameters, a set of conditions, and a set
of equation forms. Of these components, the parameters and conditions are
optional. To instantiate a generic process, one must provide both variables
of the correct type and parameters that fall within a specified range. For ex-
ample, aurelia exponential growth in Table 1 instantiates exponential growth
such that aurelia fills the role of S and b has the value 2.5.

7



Fig. 4. Parameters used for revising the model of the protist ecosystem.

In addition to the generic processes, the scientist must provide a type hierarchy
over the variables. The types predator and prey from the protist ecosystem
model are subtypes of species, which in turn is a subtype of number—the root
of the hierarchy. When instantiating a generic process, Prometheus must
select variables of the appropriate types. Consider exponential decay, which
expects a species variable. Since both aurelia and nasutum are instances of
species, either one can fill the role. In contrast, predation volterra requires one
variable each of the more specific types predator and prey. Here, knowledge of
the variable types keeps Prometheus from considering implausible models
in which the predator and the prey switch roles.

In addition to this more general domain knowledge, the scientist provides
Prometheus with additional, task-specific information to direct its search
for alternative models. This information includes a set of variables to include
in the model, a data set containing values for the observable variables, and
guidelines concerning the modification of the model. Specifically, the scientist
can select which generic processes should be considered for addition and which
current processes can be deleted or tuned by altering their parameters. Addi-
tionally, he can place limits on the total number of processes in the model, as
well as the number of instantiations allowed for each generic process.

8



Fig. 5. The best revised model for the protozoan ecosystem as displayed in Pro-

metheus.

Figure 4 shows the settings given to Prometheus when asked to revise the
model in Table 1. The top portion of the dialog box indicates that we asked
the program to consider adding instantiations of predation volterra, preda-
tion holling, logistic growth, and exponential growth. We also told Prome-

theus to consider deleting the current aurelia exponential growth and pre-
dation volterra processes, and to alter the parameters of nasutum decay. In
addition, we stated that the resulting model should contain no fewer than
two processes, no more than five processes, and only one instantiation of each
generic process.

Once provided with the necessary information, Prometheus searches for a
revised model using the method described by Langley et al. (2004). Initially,
the environment builds every model that is consistent with the given con-
straints, leaving the parameters unspecified. Next, Prometheus performs a
gradient descent search through the parameter space of each model using the
Levenberg-Marquardt method. The search begins at a random point falling
within the allowed intervals for the parameters and ends at a local optimum
identified by convergence. To more thoroughly explore the parameter space,
the environment repeats this search multiple times for each model, and selects
the parameters that produce the smallest error score.

In this example, Prometheus returns for the scientist’s inspection the 20
models that best fit the data. Figure 5 shows how the revisions are displayed
within the environment. The list of models appears on the right, each with its
name, sum of squared error, and the number of processes that were added (+),
deleted (-), changed (ˆ), and unchanged (=). The user can inspect a model
by selecting it on the screen. In addition, the models are color coded to ease
the identification of altered processes. Figure 5 displays the causal structure
of the model with the smallest error on the protozoan data.

9



Table 3
The most accurate revised model for the protozoan ecosystem.

model Predator_Prey_revised;

variables nasutum{predator},aurelia{prey};

observable nasutum,aurelia;

process logistic_growth_1;

equations d[aurelia,t,1] = 1.810082 * aurelia *

(1 - 0.000288 * aurelia);

process predation_volterra_1;

equations d[aurelia,t,1] = -1 * 0.03002 * aurelia *

nasutum;

d[nasutum,t,1] = 0.292278 * 0.03002 * aurelia *

nasutum;

process nasutum_decay;

equations d[nasutum,t,1] = -1 * 1.034667 * nasutum;

Fig. 6. Simulated trajectories predicted by the revised protozoan model and observed
values for the same system.

Table 3 shows this best scoring model, which differs from the initial one in three
ways. At the structural level, aurelia exponential growth has been replaced by
a logistic process. Thus population growth now slows once a certain density
has been reached. Within processes, the rate of change has decreased in both
equations associated with predation volterra, and the process nasutum decay
now has a slower death rate for D. nasutum.

Figure 6 compares the trajectories for D. nasutum and P. aurelia density pro-
duced by the new model with the original data. In both species, the number
of peaks and the synchronization of the oscillations match the observations
much more closely. Although peak heights have also improved, the model does
not account for the peak occurring in both populations on the thirtieth day.
However, using Prometheus the scientist can further refine this model to
incrementally improve its behavior compared to that observed in the ecosys-
tem.

10



5 Modeling an Aquatic Ecosystem Using Prometheus

In evaluating Prometheus, we have also modeled the Ross Sea ecosystem,
which Arrigo et al. (2003) have described in length. For this system, scien-
tists are particularly interested in the change in phytoplankton population
throughout the year. Suspected influences include availability of nutrients and
light, as well as grazing behavior by zooplankton. Table 4 shows a process
model for this ecosystem.

As in the model of the protozoan ecosystem, variables appear first. In this case,
zooplankton (zoo) and phytoplankton (phyto) indicate two species, nitrate is
the primary nutrient for the phytoplankton, and both light and ice are per-
tinent environmental factors. Of these variables, only phyto, nitrate, and ice
are observable; these denote the measured concentrations of phytoplankton,
NO3, and sea ice, respectively. In addition to being observable, ice is exoge-
nous, meaning that the model should not explain its behavior. As a result, the
scientist must provide the changes in the variable’s value when simulating or
revising the model.

The process definitions follow the list of variables. While most processes in
this model are relatively straightforward, set constants is distinctive in that it
shows how, within our formalism, the user can define constant values that are
shared among multiple processes. Since our language revolves around variables
and processes, the user treats the constants as variables, placing equations that
define the values inside a process. Thus we need not introduce new language
structures to represent global parameters. As with the parameters local to a
process, the values of these constants can be tuned during model revision.

The process for light production clarifies another important feature of the
environment—algebraic equations, can be used to express instantaneous ef-
fects. In practice, Prometheus computes the values of these equations im-
mediately after it simulates the differential equations for a particular point.
The algebraic equation within light production indicates that sunlight varies
based upon seasonal changes. Since the Ross Sea sits deep in the Southern
Hemisphere, the periods of day and night are extended. The equation pro-
duces cycles in rough accordance with the natural availability of sunlight while
ensuring that values never become negative. We multiply the light intensity
by the ice concentration because the ice particles reduce the availability of
light to the phytoplankton.

Figure 7 shows how Prometheus displays this model graphically. The top
portion indicates that the concentration of ice affects the available light and
hence the growth rate of phytoplankton. Similarly, the next chain of influence
down relates NO3 to phytoplankton’s growth. The concentration of phyto-

11



Table 4
A quantitative process model of the Ross Sea ecosystem.

model Ross_Sea_Ecosystem;

variables zoo{z_species}, nitrate_to_carbon_ratio{n_const},

light{signal}, nitrate{n_nutrient}, phyto{p_species},

ice{fraction}, light_rate{l_rate}, G{gz_rate},

growth_rate{gw_rate}, nitrate_rate{n_rate},

remin_rate{r_rate}, r_max{r_const}, residue{residue};

observable nitrate, phyto, ice;

exogenous ice;

process light_production;

equations light = max(0.5 * 410 * cos(6.283 * t / 365), 0)

* ice;

process phyto_loss;

equations d[phyto,t,1] = -0.1 * phyto;

d[residue,t,1] = 0.1 * phyto;

process phyto_growth;

equations d[phyto,t,1] = growth_rate * phyto;

process phyto_absorbtion_nitrate;

equations d[nitrate,t,1] = -1 * nitrate_to_carbon_ratio *

growth_rate * phyto;

process growth_limitation;

equations growth_rate = r_max *

min(nitrate_rate,light_rate);

process nitrate_availability;

equations nitrate_rate = nitrate / (nitrate + 5);

process light_availability;

equations light_rate = light / (light + 50);

process set_constants;

equations nitrate_to_carbon_ratio = 0.251247;

r_max = 0.193804;

remin_rate = 0.067559;

plankton itself is a direct result of the process governing its growth and the
process governing its loss. Two variables, zoo and G, which refer to zooplank-
ton’s concentration and growth rate, are unconnected, indicating that this
model includes no effects of grazing.

Figure 8 compares the change over time in phytoplankton and nitrate con-
centrations as simulated by our model to that actually observed. Although
the model shows a slight increase in phytoplankton, this increase comes too
late in the season, after light availability has already diminished. Therefore,
we never see the exponential growth followed by an exponential decrease that
actually occurred in the Ross Sea. However, we do observe that when the
phytoplankton population does increase, less nitrate is available.

12



Fig. 7. The graphical representation of a Ross Sea ecosystem model.

Fig. 8. Simulated versus observed output using our model of the Ross Sea ecosystem.

To revise the model so that it better fits the data, we invoked Prometheus’s
revision component. As in the predator-prey example, we provided types for
our variables and a list of generic processes. Table 4 shows the types in the
original model, whereas the generic processes that we let Prometheus instan-
tiate and add to this model appear in Table 5. In addition, we let the environ-
ment alter the parameters of all current processes except for light availability,
light production, and set constants.

Table 6 presents the alterations to the original model in the best scoring
revision. Prometheus added one each of the generic processes in Table 5
and altered the parameters of phyto loss and nitrate availability. The new
processes zoo grazes phyto 1 and Ivlev rate 1 jointly characterize zooplank-
ton’s grazing on phytoplankton, while residue loss to remineralization 1 and
nitrate remineralization 1 describe the restoration of nitrate ions to the envi-
ronment that results from the parameter in phytoplankton death and decay.
Additionally, nitrate availability was increased and the death rate of phyto-
plankton was slowed.

13



Table 5
Generic processes used for revising the model of the Ross Sea ecosystem.

generic process zoo_grazes_phyto;

variables P{p_species}, Z{z_species}, R{residue}, G{gz_rate};

parameters gamma[0,1];

equations d[P,t,1] = -1.0 * G * Z;

d[R,t,1] = gamma * G * Z;

d[Z,t,1] = (1 - gamma) * G * Z;

generic process Ivlev_rate;

variables G{gz_rate}, P{p_species};

parameters delta[0,10],rho[0,10];

equations G = rho * (1 - exp(-1 * delta * P));

generic process residue_loss_to_remineralization;

variables RES{residue}, REM{r_rate};

equations d[RES,t,1] = -1 * REM * RES;

generic process nitrate_remineralization;

variables N{n_nutrient}, REM{r_rate}, RES{residue},

NtoC{n_const};

equations d[N,t,1] = REM * NtoC * RES;

Table 6
Processes that were either altered or added by Prometheus to the original Ross
Sea model.

process zoo_grazes_phyto_1{zoo_grazes_phyto,fix};

equations d[phyto,t,1] = -1 * G * zoo;

d[residue,t,1] = 0.914228 * G * zoo;

d[zoo,t,1] = (1 - 0.914228) * G * zoo;

process Ivlev_rate_1;

equations G = 2.232819 * (1 - exp(-1 * 0.004399 * phyto));

process residue_loss_to_remineralization_1;

equations d[residue,t,1] = -1 * remin_rate * residue;

process nitrate_remineralization_1;

equations d[nitrate,t,1] = remin_rate *

nitrate_to_carbon_ratio * residue;

process phyto_loss;

equations d[phyto,t,1] = -0.017099 * phyto;

d[residue,t,1] = 0.017099 * phyto;

process nitrate_availability;

equations nitrate_rate = nitrate / (nitrate + 9.804389);

14



Fig. 9. Simulated versus observed output using a revised model of the Ross Sea
ecosystem.

Figure 9 presents the results of simulating the revised model and their re-
lation to the observed data. 5 As can be seen, this model conforms to the
observed data much better than the original version. The modeled growth of
phytoplankton now peaks at the right time and magnitude, while the nitrate
concentration also changes in roughly the correct fashion. However, discrepan-
cies still exist between the predicted and observed trajectories. Most notably,
the initial increase in phytoplankton concentration grows more slowly than
observed, and the nitrate concentration decreases more than it should. How-
ever, the revisions produced by Prometheus let one concentrate on these
secondary features of the system, giving a more appropriate starting point for
these fine-grained analyses.

6 Modeling Photosynthesis Regulation with Prometheus

In addition to the two ecosystems already described, we have used Prome-

theus to investigate the regulation of photosynthesis. Although the com-
ponents of photosynthesis regulation have been well studied in the past, re-
searchers continue to investigate the underlying mechanism. Recently, Labiosa
et al. (2003) examined photosynthetic behavior within the cyanobacterium
Synechocystis sp. PCC 6803. Their experiments simulated natural lighting
conditions and sampled the bacteria at nine points within a 24-hour period.
They processed these samples using cDNA microarray technology, and mea-
sured mRNA concentrations for numerous genes. We used Prometheus to
build a plausible model of photosynthesis regulation, to analyze the resulting
data, and to revise this model.

Table 7 displays the initial model of photosynthesis regulation, which relates
six variables. The first represents the amount of light available to the observed

5 In addition to fitting parameters in the differential equations, Prometheus also
selects initial values for the variables in the revised model. The use of these values
accounts for the discrepancy in the starting points for the simulated versus observed
trajectories.

15



Table 7
The initial model of photosynthesis regulation.

model Photosynthesis_Regulation;

variables light{light}, mRNA{mRNA}, transcription_rate{rate},

ROS{ros}, redox{redox}, photo_protein{photo_protein};

observable mRNA;

process photosynthesis;

equations d[redox,t,1] = 1.50 * light * photo_protein;

d[ROS,t,1] = 1.00 * light * photo_protein;

process photo_translation;

equations d[photo_protein,t,1] = 0.20 * mRNA;

process protein_degradation_ros;

conditions photo_protein > 0, ROS > 0;

equations d[photo_protein,t,1] = -0.05 * ROS;

d[ROS,t,1] = -0.05 * ROS;

process mRNA_transcription;

equations d[mRNA,t,1] = transcription_rate;

process regulate_light;

equations transcription_rate = 0.80 * light;

process regulate_redox;

conditions redox > 0;

equations transcription_rate = -2.00 * redox;

d[redox,t,1] = -1.00 * redox;

process mRNA_degradation;

conditions mRNA > 0;

equations d[mRNA,t,1] = -0.02 * mRNA;

process lighting;

equations light = 1 - cos((2 * 3.1415926 / 24) * t);

plants throughout the day. As in the Ross Sea model, the amount of light is
simulated using a trigonometric function, which ensures that the light intensity
peaks at noon. The next three variables represent concentrations of mRNA,
photosynthetic protein, and reactive oxygen species (ROS), respectively. The
mRNA variable encodes an aggregate over 17 genes that were implicated in
regulation of the photosynthetic system, whereas both photosynthetic protein
and ROS are biologically plausible theoretical terms. The former denotes the
average concentration of all proteins involved in photosynthesis, whereas the
latter represents the amount of a damaging byproduct of the process. The
final two variables signify the amount of energy in the system (redox) and the
rate of mRNA transcription.

The eight processes in our initial model are similar in form to those we have
previously discussed. Photosynthesis produces both redox and ROS. Transla-
tion increases the amount of protein, while transcription increases the mRNA
concentration while consuming redox. The negative effect of ROS on protein

16



Fig. 10. Prometheus’ display of the photosynthesis model from Table 7.

is captured in protein degradation ros, and the normal degradation of mRNA
is represented by mRNA degradation.

Unlike the other models, some of the processes in Table 7 have conditions,
which are stated as arithmetic relations placed before the equations and sep-
arated by commas. During simulation, a process is active only when all of its
conditions are met. As an example, mRNA degradation cannot occur unless
mRNA is present, so the model explicitly requires a positive mRNA concen-
tration for the degradation process to proceed.

Figure 10 shows how Prometheus displays the process model for photosyn-
thesis regulation. This graphical representation reveals three primary path-
ways that are tied together by three processes. The lighting pathway provides
input to photosynthesis and affects the amount of mRNA by influencing the
transcription rate. The pathway containing ROS and photosynthetic protein
describes how protein concentrations decrease within the cell as affected by
the amount of mRNA through photo translation. The last pathway describes
the change in mRNA due to the amount of cellular energy. All three inter-
act through the central process photosynthesis, which uses light and produces
both ROS, which lowers the protein concentration, and redox, which increases
mRNA transcription.

Figure 11 presents the simulated results from the model compared with the
observed mRNA values. As in the data, the predicted trajectory has two peaks,
with a striking drop in mRNA concentration at noon. However, both the
magnitude and timing of the events are incorrect. The first peak produced by

17



Fig. 11. Simulated and observed trajectories of mRNA concentration using the orig-
inal (left) and revised (right) model of photosynthesis regulation. The observed
trajectories are not shown.

Table 8
A revised model of photosynthesis regulation.

model Photosynthesis_Regulation;

variables light{light}, mRNA{mRNA}, transcription_rate{rate},

ROS{ros}, redox{redox}, photo_protein{photo_protein};

observable mRNA;

process photosynthesis;

equations d[redox,t,1] = 3.62 * light * photo_protein;

d[ROS,t,1] = 1.34 * light * photo_protein;

process photo_translation;

equations d[photo_protein,t,1] = 0.05 * mRNA;

process protein_degradation_ros;

conditions photo_protein > 0, ROS > 0;

equations d[photo_protein,t,1] = -1 * 0.10 * ROS;

d[ROS,t,1] = -1 * 0.10 * ROS;

process mRNA_transcription;

equations d[mRNA,t,1] = transcription_rate;

process regulate_redox;

conditions redox > 0;

equations transcription_rate = -12.72 * redox;

d[redox,t,1] = -1 * 5.31 * redox;

process mRNA_degradation;

conditions mRNA > 0;

equations d[mRNA,t,1] = -1 * 0.82 * mRNA;

process lighting;

equations light = 1 - cos((2 * 3.1415926 / 24) * t);

the model occurs too early in the day, and the last peak both occurs too late
and overshoots the observed maximum concentration. Even more distressing
is that the concentration of mRNA dips below zero for several hours. Each
of these discrepancies in the simulated trajectory indicates that we should
attempt to revise the model.

18



In earlier work (Langley et al., 2004), we reported the model in Table 8, which
provides an improved fit to the data. Structurally, this model differs from that
in Table 7 due to the absence of regulate light. Originally, the amount of light
affected mRNA translation directly, but the revised version posits that light
has only an indirect effect due to its influence on redox. In addition to this
structural change, Prometheus altered the parameters of all the processes.
The resulting model leads to the behavior shown on the right in Figure 11,
which fits the observations almost perfectly. 6

7 Related Research on Modeling and Discovery

In the preceding text, we illustrated both the structure of quantitative process
models and the capabilities of Prometheus. We introduced both a formalism
that lets a scientist represent mechanisms as networks of variables and famil-
iar processes and an environment that not only displays the causal structure
of the model but also simulates its behavior. If the simulated trajectories fail
to match observed data, the user can ask Prometheus to propose revisions
that improve its fit in ways consistent with domain knowledge. Generic pro-
cesses provide the link in these revision efforts, giving the ability to produce
explanatory models, as opposed to simply descriptive ones. This combination
of features distinguishes Prometheus from other quantitative modeling en-
vironments.

As we indicated in the introduction, Prometheus’s approach to scientific
modeling is not entirely new, but rather borrows ideas from two previously
disconnected literatures. However, it does more than simply combine two ex-
isting technologies; it moves beyond them to demonstrate new functionality
and address new issues in interface design. Here we discuss in more detail the
relations between our approach and earlier work.

On the one hand, the Prometheus environment has many similarities to
modeling frameworks like STELLA (Richmond et al., 1987) and MATLAB
(The Mathworks, Inc., 1997). They share the notion of a formal syntax for
specifying both instantaneous and dynamic quantitative models in terms of
mathematical equations, although their detailed notations differ. In addition,
they let the user create and edit models in this syntax, as well as invoke an as-
sociated simulator that can run those models to generate predictions. Finally,

6 We have not reported the observed data because our biologist collaborators have
not yet published them. Also, Given the noise inherent in microarrays, such a good
match suggests that we are overfitting the training set, but our point was to demon-
strate another domain for which our approach is relevant, not to propose this as the
correct model.

19



they all provide a graphical interface that lets the user diplay and inspect the
logical structure of his mathematical models. Our approach also shares many
features with Keller’s 1995 SIGMA, another graphical environment that takes
an interactive approach to model building, visualization, and analysis, as well
as providing extensive checks to ensure model consistency and handle unit
conversions.

However, Prometheus moves beyond these earlier modeling environments by
requiring the user to organize equations into processes. This idea that plays a
central role in many scientific disciplines, but previous quantitative simulation
languages have not supported it. Equally important, the new environment
supports computational revision of models in response to data, constrained
by domain knowledge in the form of generic processes and by input from the
user. MATLAB includes some facilities for attempting to optimize a model’s
parameters for a given data set, but it cannot alter the basic structure of a
model.

On the other hand, Prometheus incorporates many ideas from earlier work
on computational scientific discovery. In particular, it adopts the metaphor of
heuristic search through a space of candidate hypotheses or models guided by
their ability to fit data. Our approach differs from other quantitative discovery
work (e.g., Langley et al., 1987; Washio and Motodoa, 1998) by focusing on
process models, rather than on independent sets of equations, and by empha-
sizing revision of models rather than on their generation, though it borrows
ideas on this front from some other efforts. Early research in this area focused
on qualitative models (e.g., Ourston and Mooney, 1990; Towell, 1991), al-
though some more recent work has dealt with quantitative models composed
of numeric equations (e.g., Chown and Dietterich, 2000; Saito et al., 2001;
Todorovski and Džeroski, 2001).

The environment also differs from most earlier discovery research by its re-
liance on explicit domain knowledge to constrain search. For example, Easley
and Bradley (1999) utilize “generalized physical networks”, which take the
form of generalized equations, as background knowledge in their approach to
identifying differential equation models of nonlinear dynamic systems. Simi-
larly, Todorovski and Džeroski’s 1997 Lagramge encodes background knowl-
edge in terms of context-free grammars that specify the space of equations to
consider during its search for models. Prometheus draws on a similar mech-
anism, but states its domain knowledge in terms of generic processes rather
than these other formalisms, as has Todorovski (2003) in his recent work.

But the main difference from earlier discovery research concerns the interactive
nature of our environment. Previous work on computational scientific discov-
ery has focused almost exclusively on automated methods, whereas Prome-

theus aims explicitly to support scientists rather than to replace them. This

20



philosophy is consistent with a general trend in artificial intelligence research
toward advisory systems, but it means we have had to address issues about
human-computer interaction (e.g., how best to let users constrain the search
for revised models) that some algorithm-oriented researchers will find unin-
teresting. Nevertheless, such issues must receive serious attention if we hope
to develop computational discovery tools that practicing scientists will use on
a regular basis.

We should note that our environment is not quite the first designed to accept
user input. 7 For example, Valdés-Pérez (1995) has developed Mechem, which
finds chemical reaction pathways that explain how a set of reactants produce a
set of observed products. In addition to background knowledge about catalytic
chemistry, the system accepts input from the user about constraints, expressed
in terms familiar to chemists, that the inferred pathways must satisfy. The
user can only influence Mechem’s behavior by setting switches before a run,
not in an on-line manner, as we envision for the Prometheus environment.
Nevertheless, the system has produced a number of novel reaction pathways
that have appeared in the chemistry literature.

Another example is Mitchell et al.’s 1997 Daviccand, which was designed to
discover quantitative relations in metallurgy. This system encourages users to
actively direct the search process and provides explicit control points where
they can influence choices. In particular, the user formulates a problem by
specifying the dependent variable the laws should predict, the region of the
space to consider, and the independent variables to use when looking for nu-
meric laws. The user can also manipulate the data by selecting which points
to treat as outliers. Daviccand presents its results in terms of graphical dis-
plays and functional forms that are familiar to metallurgists, and has produced
knowledge published in their literature.

The research that appears closest to our own comes from Mahidadia and
Compton (2001), who report an integrated environment for the development
and revision of qualitative causal models. Their system provides a graphical
interface for model construction and visualization that maps well onto models
in their target domain, neuroendocrinology. The JustAid system starts with
an initial model provided by the user and, using experimental data about the
effects of independent variables on dependent measures, recommends changes
to this model in terms of link additions and deletions, which the user must
approve before they are implemented. The main functional difference between
JustAid and Prometheus are that the former supports qualitative models,
stated as signed links between continuous variables, whereas the latter deals

7 A number of commercial environments for knowledge discovery also support user
interaction, but, besides focusing on business applications, these emphasize decisions
about how to preprocess the data and selecting which algorithm to run on them.

21



with quantitative process models. Their underlying algorithms also differ, but
these are far less visible to users than the model formalism and interface.

8 Directions for Future Research

Although the Prometheus breaks new ground in computer-assisted modeling
and discovery, we must still extend it along a number of dimensions before it
becomes a robust tool for practicing scientists. One limitation is that the
current framework only supports models at one level of description, which
means that it is most appropriate for situations that involve relatively few
variables and processes. A natural response is to expand the modeling language
to incorporate the notion of subsystems that characterize components of the
overall model. For example, an ecosystem model might include one subsystem
for water-related processes and another for sunlight-related processes. This
decompositional approach would let users hide information when desired and
help them manage more complex models by letting them focus both their own
attention, and that of Prometheus’s revision module, on one subsystem at
a time.

Other extensions would augment the background knowledge available to the
environment, which is currently limited to a taxonomy of variables that is
linked to a set of generic processes. Future versions of Prometheus should
incorporate dimensional information about classes of variables, which would
give the system enough knowledge to check models more carefully for cor-
rectness and convert units across processes that use different measures. The
system should also support a taxonomy of processes to provide the user with
more flexibility to direct model revision. For instance, such a taxonomy might
include generic processes like ‘growth’ at higher levels that specify only qual-
itative proportionalities between variables, whereas processes at lower levels
would encode specialized types like ‘exponential growth’ that give the forms
of numeric equations. Such a hierarchy would let users identify either the ab-
stract processes or the more concrete ones as candidates for the revision mod-
ule. More generally, the environment should also support the creation and
revision of qualitative models, which are especially appropriate for domains
where data are limited.

The current implementation of Prometheus relies on a single revision algo-
rithm, but this is certainly not a logical necessity. In future versions, we plan
to incorporate other discovery algorithms that would broaden the methods
available for model revision, which in turn should make this facility more ro-
bust and effective. We should also extend the Prometheus environment to
move beyond model revision to support the induction of process models from
generic components and data, as we have described elsewhere (Langley et al.,
2002).

22



Finally, we plan to test Prometheus on models and data from additional sci-
entific domains in order to provide further evidence of its generality. As part
of this effort, we also intend to study its utilization by scientists in controlled
settings, which should give insights into its suitability as a practical modeling
tool. This effort should include both detailed analyses of interaction traces,
to reveal places where confusions and bottlenecks occur, and systematic ex-
periments that remove some parts of the system, to identify sources of power.
Naturally, the results of these studies would then influence the next version
of the environment, bringing it closer to becoming a flexible and robust tool
that would be readily adopted and used by domain scientists.

9 Concluding Remarks

In this paper, we presented a new framework for modeling and discovering sci-
entific knowledge, along with Prometheus, an interactive environment that
implements this approach. The environment includes a language for specifying
quantitative models in which the notion of process plays a central role. This
formalism takes advantage of traditional scientific notations like algebraic and
differential equations, but also provides additional structure to aid in present-
ing and revising models. We illustrated the process modeling language with
examples from three domains, which also clarified the interactive features of
Prometheus. These include options for visualizing the causal structure of
process models, for simulating these models to generate predictions, for ana-
lyzing the resulting behavior of models, and for semi-automatically revising
models in response to observations. The latter facility lets the user specify
which portions of a model to revise and to indicate alternative processes,
taken from a library of generic background knowledge, that the system should
consider.

We evaluated this approach to model revision on two domains that concerned
interactions within an ecosystem and one that involved gene regulation. Us-
ing a simple predator-prey ecosystem, we demonstrated that Prometheus

can produce revised models that yield improvements to both the qualitative
shape and quantitative error score with respect to the original model. Ap-
plication to the Ross Sea ecosystem indicated that the environment’s revision
capabilities scale up to represent more complicated interactions, while revision
of a photosynthesis-regulation model further indicated the generality of the
approach.

Although our development of Prometheus is still in its early stages, we be-
lieve the environment makes important contributions to simulation languages,
to human-computer interaction, and to computational scientific discovery. Our
initial results with the system have been encouraging and, despite the room

23



that remains for extensions and improvements, we feel that they demonstrate
the promise of such an interactive framework for computer-assisted modeling
and discovery.

Acknowledgements

The research reported in this paper was supported in part by NTT Commu-
nication Science Laboratories, Nippon Telegraph and Telephone Corporation,
in part by Grant NCC 2-1220 from NASA Ames Research Center, and in part
by Grant No. IIS-0326059 from the National Science Foundation. We thank
Nima Asgharbeygi and Xumei Marker for their work on the environment’s
component algorithms, along with Sašo Džeroski, Ljupčo Todorovski, Kazumi
Saito, and Daniel Shapiro for discussions that led to many of the ideas in this
paper.

References

Arrigo, K.R., Worthen, D.L., Robinson, D.H., 2003. A coupled ocean–
ecosystem model of the Ross Sea: 2. Iron regulation of phytoplankton taxo-
nomic variability and primary production. Journal of Geophysical Research
108 (C7), 3231.

Chown, E., Dietterich, T.G., 2000. A divide and conquer approach to learn-
ing from prior knowledge, in: Proceedings of the Seventeenth International
Conference on Machine Learning. Morgan Kaufmann, San Francisco, CA,
143–150.

Easley, M., Bradley, E., 1999. Generalized physical networks for automated
model building, in: Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence. Morgan Kaufmann, 1047–1053.

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., 1996. From data mining to
knowledge discovery in databases. AI Magazine 17, 37–54.

Jost, C., Ellner, S., 2000. Testing for predator dependence in predator-prey
dynamics: A nonparametric approach. Proceedings of the Royal Society of
London: Biological Sciences 267, 1611–1620.

Keller, R.M., 1995. An intelligent visual programming environment for scien-
tific modeling. Science Information Systems Newsletter 35.

Labiosa, R., Arrigo, K., Grossman, A., Reddy, T.E., Shrager, J., 2003. Diurnal
variations in pathways of photosynthetic carbon fixation in a freshwater
cyanobacterium, presented at European Geophysical Society Meeting. Nice,
France.

Langley, P., 2000. The computational support of scientific discovery. Interna-
tional Journal of Human-Computer Studies 53, 393–410.

24



Langley, P., Sánchez, J., Todorovski, L., Džeroski, S., 2002. Inducing process
models from continuous data, in: Proceedings of the Eighteenth Conference
on Machine Learning. Morgan Kaufmann, 347–354.

Langley, P., Shrager, J., Asgharbeygi, N., Bay, S., 2004. Inducing explanatory
process models from biological time series, in: Proceedings of the Ninth
Workshop on Intelligent Data Analysis and Data Mining. Stanford, CA,
85–90.

Langley, P., Simon, H.A., Bradshaw, G.L., Żytkow, J.M., 1987. Scientific dis-
covery: Computational explorations of the creative processes. MIT Press,
Cambridge, MA.

Machamer, P.K., Darden, L., Craver, C.F., 2000. Thinking about mechanisms.
Philosophy of Science 67, 1–25.

Mahidadia, A., Compton, P., 2001. Assisting model discovery in neuroen-
docrinology, in: Proceedings of the Fourth International Conference on Dis-
covery Science. Springer, 214–227.

Mitchell, F., Sleeman, D., Duffy, J.A., Ingram, M.D., Young, R.W., 1997.
Optical basicity of metallurgical slags: A new computer-based system for
data visualisation and analysis. Ironmaking and Steelmaking 24, 306–320.

Ourston, D., Mooney, R., 1990. Changing the rules: A comprehensive approach
to theory refinement, in: Proceedings of the Eighth National Conference on
Artificial Intelligence. AAAI Press, Boston, MA, 815–820.

Richmond, B., Peterson, S., Vescuso, P., 1987. An academic user’s guide to
STELLA. High Performance Systems, Lyme, NH.

Saito, K., Langley, P., Grenager, T., Potter, C., Torregrosa, A., Klooster, S.A.,
2001. Computational revision of quantitative scientific models, in: Proceed-
ings of the Fourth International Conference on Discovery Science. Springer,
336–349.

Shneiderman, B., 2000. Creating creativity: User interfaces for supporting in-
novation. ACM Transactions of Computer-Human Interaction 7, 114–138.

The MathWorks, Inc., 1997. Simulink user’s guide: Dynamic system simula-
tion for MATLAB. Natick, MA.

Todorovski, L., 2003. Using domain knowledge for automated modeling of
dynamic systems with equation discovery. Doctoral Dissertation, Faculty of
Computer and Information Science, University of Ljubljana, Slovenia.

Todorovski, L., Džeroski, S., 1997. Declarative bias in equation discovery, in:
Proceedings of the Fourteenth International Conference on Machine Learn-
ing. Morgan Kaufmann, Nashville, TN, 376–384.

Todorovski, L., Džeroski, S., 2001. Theory revision in equation discovery, in:
Proceedings of the Fourth International Conference on Discovery Science.
Springer, Washington, DC, 389–400.

Towell, G., 1991. Symbolic knowledge and neural networks: Insertion, refine-
ment, and extraction. Doctoral dissertation Computer Sciences Department,
University of Wisconsin, Madison, WI.

Valdés-Pérez, R.E., 1995. Machine discovery in chemistry: New results, Arti-
ficial Intelligence 74, 191–201.

25



Washio, T., Motoda, H., 1998. Discovering admissible simultaneous equations
of large scale systems, in: Proceedings of the Fifteenth National Conference
on Artificial Intelligence. AAAI Press, Madison, WI, 189–196.

26


