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Abstract

In this chapter, I review the role of cognitive psychology in the origins of artificial intelligence

and in our continuing pursuit of this objective. I consider some key ideas about representation,

performance, and learning that had their inception in computational models of human behavior,

and I argue that this approach to developing intelligent systems, although no longer common, has

an important place in the field. Not only will research in this paradigm help us understand the

nature of human cognition, but findings from psychology can serve as useful heuristics to guide

our search for accounts of intelligence. I present some constraints of this sort that future research

should incorporate, and I claim that another psychological notion – cognitive architectures – is

especially relevant to developing unified theories of the mind. Finally, I suggest ways to encourage

renewed interaction between AI and cognitive psychology.

1. Introduction

In its early days, artificial intelligence was closely allied with the study of human cognition, to the

benefit of both fields. Many early AI researchers were concerned with using computers to model the

nature of people’s thinking, while others freely borrowed ideas from psychology in their construction

of intelligent artifacts. Over the past 20 years, this link has largely been broken, with very few

of the field’s researchers showing concern with results from psychology or even taking inspiration

from human behavior. I maintain that this trend is an unfortunate one which has hurt our ability

to pursue two of AI’s original goals: to understand the nature of the human mind and to achieve

artifacts that exhibit human-level intelligence.

In the pages that follow, I review some early accomplishments of AI in representation, perfor-

mance, and learning that benefited from an interest in human behavior. After this, I give examples

of the field’s current disconnection from cognitive psychology and suggest some reasons for this

development. I claim that AI still has many insights to gain from the study of human cognition,

and that results in this area can serve as useful constraints on intelligent artifacts. In this context,

I argue that research on cognitive architectures, a movement that incorporates many ideas from

psychology, offers a promising path toward developing unified theories of intelligence. In closing, I

consider steps we can take to remedy the current undesirable situation.
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2. Early Links Between Artificial Intelligence and Psychology

At it emerged in the 1950s, artificial intelligence incorporated ideas from a variety of sources

and pursued multiple goals, but a central insight was that we might use computers to reproduce

the complex forms of cognition observed in humans. Some researchers took human intelligence

as an inspiration and source of ideas without attempting to model its details. Other researchers,

including Herbert Simon and Allen Newell, generally viewed as two of the field’s co-founders, viewed

themselves as cognitive psychologists who used AI systems to model the mechanisms that underlie

human thought. This view did not dominate the field, but it was acknowledged and respected

even by those who did not adopt it, and its influence was clear throughout AI’s initial phase.

The paradigm was pursued vigorously at the Carnegie Institute of Technology, where Newell and

Simon based their work, and it was well represented in collections like Computers and Thought

(Feigenbaum & Feldman, 1963) and Semantic Information Processing (Minsky, 1969).

For example, much of the early work on knowledge representation was carried out by scientists

who were interested in the structure and organization of human knowledge. Thus, Feigenbaum

(1963) developed discrimination networks as a model of human long-term memory and evaluated his

EPAM system in terms of its ability to match established psychological phenomena. Hovland and

Hunt (1960) introduced the closely related formalism of decision trees to model human knowledge

about concepts. Quillian (1968) proposed semantic networks as a framework for encoding knowledge

used in language, whereas Schank and Abelson’s (1977) introduction of scripts was motivated by

similar goals. Newell’s (1973) proposal for production systems as a formalism for knowledge that

controls sequential cognitive behavior was tied closely to results from cognitive psychology. Not

all work in this area was motivated by psychological concerns (e.g., there was considerable work

in logical approaches), but research of this sort was acknowledged as interesting and had a strong

impact on the field.

Similarly, studies of human problem solving had a major influence on early AI research. Newell,

Shaw, and Simon’s (1958) Logic Theorist, arguably the first implemented AI system, which in-

troduced the key ideas of heuristic search and backward chaining, emerged from efforts to model

human reasoning on logic tasks.1 Later work by the same team led to means-ends analysis (Newell,

Shaw, & Simon, 1961), an approach to problem solving and planning that was implicated in verbal

protocols of humans puzzle solving. Even some more advanced methods of heuristic search that are

cast as resulting from pure algorithmic analysis have their roots in psychology. For example, the

widely used technique of iterative deepening bears a close relationship to progressive deepening, a

search method that De Groot (1965) observed in human chess players.

On a related note, research on knowledge-based decision making and reasoning, which emerged

during the 1980s, incorporated many ideas from cognitive psychology. The key method for de-

veloping expert systems (Waterman, 1986) involved interviewing human experts to determine

the knowledge they used when making decisions. Two related movements – qualitative physics

(Kuipers, 1994) and model-based reasoning (Gentner & Stevens, 1983) – incorporated insights into

the way humans reasoned about complex physical situations and devices. Yet another theoretical

1. Simon (1981) explicitly acknowledges an intellectual debt to earlier work by the psychologist Otto Selz.
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framework that was active at this time, reasoning by analogy (e.g., Gentner & Forbus, 1991), had

even closer ties to results from experiments in psychology. Finally, during the same period, research

on natural language understanding borrowed many ideas from structural linguistics, which studied

the character of human grammatical knowledge.

Early AI research on learning also had close ties to computational models of human learning.

Two of the first systems, Feigenbaum’s (1963) EPAM and Hovland and Hunt’s (1960) CLS, di-

rectly attempted to model results from psychological experiments on memorization and concept

acquisition. Later work by Anzai and Simon (1979), which modeled human learning on the Tower

of Hanoi, launched the 1980s movement on learning in problem solving, and much of the work in

this paradigm was influenced by ideas from psychology (e.g., Minton et al., 1989) or made direct

contact with known phenomena (e.g., Jones & VanLehn, 1994). Computational models of syntax

acquisition typically had close ties with linguistic theories (e.g., Berwick, 1979) or results from

developmental linguistics (e.g., Langley, 1983). In general, early machine learning reflected the

diverse nature of human learning, dealing with a broad range of capabilities observed in people

even when not attempting to model the details.

The alliance between psychological and non-psychological AI had benefits for both sides. Careful

studies of human cognition often suggested avenues for building intelligent systems, whereas pro-

grams developed from other perspectives often suggested ways to model people’s behavior. There

was broad agreement that humans were our only examples of general intelligent systems, and that

the primary goal of AI was reproduce this capability with computers. Members of each paradigm

knew about each others’ results and exchanged ideas to their mutual advantage.

3. The Unbalanced State of Modern Artificial Intelligence

Despite these obvious benefits, the past 20 years have seen an increasing shift in AI research

away from concerns with modeling human cognition and a decreasing familiarity with results from

psychology. What began as a healthy balance between two perspectives on AI research, sometimes

carried on within individual scientists, has gradually become a one-sided community that believes

AI and psychology have little to offer each other. Here I examine this trend in some detail, first

describing the changes that have occurred in a number of research areas and then considering some

reasons for these transformations.

Initial research on knowledge representation, much of which was linked to work in natural lan-

guage understanding, led to notations such as semantic networks and scripts, which borrowed ideas

from psychology and which influenced that field in return. Over time, researchers in this area be-

came more formally oriented and settled on logic as the proper notation to express content. Many

became more concerned with guarantees about efficiently processing than with matching the flexi-

bility and power observed in human knowledge structures, leading to representational frameworks

that made little contact with psychological theories.

The earliest AI systems for problem solving and planning drew on methods like means-ends

analysis, which were implicated directly in human cognition. For mainly formal reasons, these

were gradually replaced with algorithms that constructed partial-order plans, which required more
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memory but retained the means-ends notion of chaining backward from goals. More recently, these

have been replaced with “disjunctive” techniques, which reformulate the planning task in terms of

constraint satisfaction and which bear little resemblance to problem solving in humans.

Early work on natural language processing aimed to produce the same deep understanding of

sentences and discourse as humans exhibit. However, constructing systems with this ability was

time consuming and their behavior was fragile. Over time, they have been largely replaced with

statistical methods that have limited connection to results from linguistics or psycholinguistics.

More important, they focus on tasks like information retrieval and information extraction that

have little overlap with the broad capabilities found in human language processing.

Research in machine learning initially addressed a wide range of performance tasks, includ-

ing problem solving, reasoning, diagnosis, natural language, and visual interpretation. Many ap-

proaches reproduced the incremental nature of human learning, and they combined background

knowledge with experience to produce rates of improvement similar to those found in people.

However, during the 1990s, work in this area gradually narrowed to focus almost exclusively on

supervised induction for classification and reinforcement learning for reactive control. This shift

was accompanied by an increased emphasis on statistical methods that require large amounts of

data and learn far more slowly than humans.

There are many reasons for these developments, some of them involving technological advances.

Faster computer processors and larger memories have made possible new methods that operate

in somewhat different ways than people. Current chess-playing systems invariably retain many

more alternatives in memory, and look much deeper ahead, than human players. Similarly, many

supervised induction methods process much larger data sets, and consider a much larger space of

hypotheses, than human learners. This does not mean they might fare even better by incorporating

ideas from psychology, but these approaches have led to genuine advances.

Unfortunately, other factors have revolved around historical accidents and sociological trends.

Most academic AI researchers have come to reside in computer science departments, many of

which grew out of mathematics units and which have a strong formalist bent. Many faculty in such

departments view connections to psychology with suspicion, making them reluctant to hire the

few scientists who attempt to link the two fields. For such researchers, mathematical tractability

becomes a key concern, leading them to restrict their work to problems they can handle analytically,

rather than ones that humans tackle heuristically. Graduate students are inculcated in this view,

so that new PhDs pass on the bias when they take positions.

The mathematical orientation of many AI researchers is closely associated with an emphasis on

approaches that guarantee finding the best solutions to problems. This concern with optimizing

stands in stark contrast with early AI research, which incorporated the idea of satisficing (Simon,

1955) from studies of human decision making. The notion of satisficing is linked to a reliance on

heuristics, which are not guaranteed to find the best (or even any) solutions, but which usually

produce acceptable results with little effort. Formalists who insist on optimality are often willing to

restrict their attention to classes of problems for which they can guarantee such solutions, whereas

those willing to use heuristic methods are willing to tackle more complex tasks.
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Another factor that has encouraged a narrowed scope of research has been the commercial success

of AI technology. Methods for diagnosis, supervised learning, scheduling, and planning have all

found widespread uses, many of them supported by the content made available on the Web. The

financial success and commercial relevance of these techniques have led many academics to focus on

the narrowly defined problems like text classification, causing a bias toward near-term applications

and an explosion of work on “niche AI” rather than on complete intelligent systems. Component

algorithms are also much easier to evaluate experimentally, a lesson that has been reinforced by

the many problem repositories and competitions that have become common.

Taken together, these influences have discouraged most AI scientists from making contact with

ideas from psychology. Research on computational models of human cognition still exists, but it

is almost invariably carried out in psychology departments. This work is seldom referred to as

artificial intelligence or published in that field’s typical outlets, even though the systems developed

meet all the traditional AI criteria. However, the standards for success in this area tend to be

quite different, in that they focus on quantitative fits to reaction times or error rates observed in

humans, rather than the ability to carry out a task efficiently or accurately. This leads developers to

incorporate parameters and other features that hold little interest to non-psychological researchers,

encouraging the mistaken impression that this work has little to offer the broader AI community.

However, a few scientists have instead concentrated on achieving qualitative matches to human

behavior. For example, Cassimatis (2004) describes such a theory of language processing, whereas

Langley and Rogers (2005) report a theory of human problem solving that extends Newell, Shaw,

and Simon’s (1958, 1961) early work. Their goal has been not to develop narrow models that fit

the detailed results of psychological experiments, which to them seems premature, but rather to

construct models that have the same broad functionality as we find in people. As Cassimatis (2006)

has argued, research in this paradigm has more to offer mainstream artificial intelligence, and it

comes much closer in spirit to the field’s early efforts at modeling human cognition.

In summary, over the past few decades, AI has become increasingly focused on narrowly defined

problems that have immediate practical applications or that are amenable to formal analysis.

Concerns with processing speed, predictive accuracy, and optimality have drawn attention away

from the flexible forms of intelligent behavior at which humans excel. Research on computational

modeling does occur in psychology, but it emphasizes quantitative fits to experimental results and

also exhibits a narrowness in scope. The common paradigms differ markedly from those pursued

at the dawn of artificial intelligence.

4. Promised Benefits of Renewed Interchange

Clearly, the approach to developing intelligent systems adopted by early AI researchers is no longer

a very common one, but I maintain that it still has an important place in the field. The reasons

for pursuing research in this paradigm are the same as they were 50 years ago, at the outset of our

discipline. However, since most AI scientists appear to have forgotten them, I repeat them here at

the risk of stating the obvious to those with longer memories. I also discuss a paradigm that holds

special promise for bridging the rift.
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First, research along these lines will help us understand the nature of human cognition. This is

a worthwhile goal in its own right, not only because it has implications for education and other

applications, but because intelligent human behavior is an important set of phenomena that demand

scientific explanation. Understanding the human mind in all its complexity remains an open and

challenging problem that deserves more attention, and computational models of cognition offer the

best way to tackle it.

Second, findings from psychology can serve as useful heuristics to guide our development of

intelligent artifacts. They tell us ways that people represent their knowledge about the world,

the processes that they employ to retrieve and use that knowledge, and the mechanisms by which

they acquire it from experience. AI researchers must make decisions about these issues when

designing intelligent systems, and psychological results about representation, performance, and

learning provide reasonable candidates to consider. Humans remain our only example of general

intelligent systems and, at the very least, insights about how they operate should receive serious

consideration in the design of intelligent artifacts. Future AI research would benefit from increased

reliance on such design heuristics.

Third, observations of human capabilities can serve as an important source of challenging tasks

for AI research. For example, we know that humans to understand language at a much deeper level

than current systems, and attempting to reproduce this ability, even by means quite different than

those people use, is a worthwhile endeavor. Humans can also generate and execute sophisticated

plans that trade off many competing factors and that achieve multiple goals. They have the ability

to learn complex knowledge structures in an incremental manner from few experiences, and they

exhibit creative acts like composing musical pieces or devising scientific theories. Most current

AI research sets its sights too low by focusing on simpler tasks like classification and reactive

control, many of which can hardly be said to involve intelligence. Psychological studies reveal the

impressive abilities of human cognition, and thus serve to challenge the field and pose new problems

that require extensions to existing technology.

In addition, I claim that another psychological notion – cognitive architectures (Newell, 1990;

Langley, Laird, & Rogers, 2006) – is especially relevant to developing unified theories of the mind.

A cognitive architecture specifies aspects of an intelligent system that are stable over time, much

as in a building’s architecture. These include the memories that store perceptions, beliefs, and

knowledge, the representation of elements that are contained in these memories, the performance

mechanisms that use them, and the learning processes that build on them. Such a framework

typically comes with a programming language and software environment that supports the efficient

construction of knowledge-based systems.

Most research on cognitive architectures shares a number of important theoretical assumptions.

These include claims that:

• short-term memories are distinct from long-term memories, in that the former contain dynamic

information and the latter store more stable content;

• both short-term and long-term memories contain symbolic list structures that can be composed

dynamically during performance and learning;



Intelligence in Humans and Machines Page 7

• the architecture accesses elements in long-term memory by matching their patterns against

elements in short-term memory;

• cognition operates in cycles that retrieve relevant long-term structures, then use selected ele-

ments to carry out mental or physical actions; and

• learning is incremental, being tightly interleaved with performance, and involves the monotonic

addition of new symbolic structures to long-term memory.

Most of these ideas have their origins in theories of human memory, problem solving, reasoning,

and skill acquisition. They are widespread in research on cognitive architectures, but they remain

relatively rare in other branches of artificial intelligence to their detriment. The benefits of this

paradigm include a variety of constraints from psychology about how to approach building intel-

ligent systems, an emphasis on demonstrating the generality of architectures across a variety of

domains, and a focus on systems-level research that moves beyond component algorithms toward

unified theories of intelligence.

Research on cognitive architectures varies widely in the degree to which it attempts to match

psychological data. ACT-R (Anderson & Lebiere, 1998) and EPIC (Kieras & Meyer, 1997) aim

for quantitative fits to reaction time and error data, whereas Prodigy (Minton et al., 1989)

incorporates selected mechanisms like means-ends analysis but otherwise makes little contact with

human behavior. Architectures like Soar (Laird, Newell, & Rosenbloom, 1987; Newell, 1990) and

Icarus (Langley & Choi, in press; Langley & Rogers, 2005) take a middle position, drawing on

many psychological ideas but also emphasizing their strength as flexible AI systems. What they hold

in common is an acknowledgement of their debt to theoretical concepts from cognitive psychology

and a concern with the same intellectual abilities as humans.

5. Healing the Intellectual Rift

If we assume, for the sake of argument, that artificial intelligence would indeed benefit from renewed

links to cognitive psychology, then there remains the question of how we can best achieve this

objective. As usual for complex problems, the answer is that we must take many steps, each of

which will take us some distance toward our goal.

Clearly, one response must involve education. Most AI courses ignore connections to cognitive

psychology, and few graduate students read papers that are not available on the Web, which means

they are not even aware of early paradigms. We need to provide a broader education in AI that

incorporates ideas from cognitive psychology, linguistics, and logic, which are far more important to

the field’s original agenda than ones from mainstream computer science. One example comes from

a course on reasoning and learning in cognitive systems (http://cll.stanford.edu/reason-learn/),

which I have offered through the Computer Science Department at Stanford University (despite

some internal opponents who claimed it did not belong there), but we need many more.

We should also encourage more research within the cognitive modeling tradition. The past few

years have seen encouraging developments in funding agencies like NSF and DARPA, with the latter

supporting a number of large-scale programs with an emphasis on “cognitive systems” (Brachman
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& Lemnios, 2002). These projects have already galvanized many researchers to work on intelligent

systems with the same broad capabilities as found in humans, and ideas from cognitive psychology

have found their way into a number of these efforts. In terms of publication venues, the annual

AAAI conference has added a distinct track for integrated systems that includes cognitive models

as one theme, and a recent AAAI Spring Symposium (Lebiere & Wray, 2006) dealt explicitly with

relations between AI and cognitive science. We need more changes along these lines, but recent

events have moved us in the right direction.

In summary, the original vision of AI was to understand the principles that support intelligent

behavior and to use them to construct computational systems with the same breadth of abilities as

humans. Many early systems doubled as models of human cognition, while others made effective

use of ideas from psychology. The last two decades have seen far less research in this tradition, and

work by psychologists along these lines is seldom acknowledged by the AI community. Nevertheless,

observations of intelligent behavior in humans can provide an important source of mechanisms and

tasks to drive research. Without them, AI seems likely to become a set of narrow, specialized

subfields that have little to tell us about the nature of the mind. Over the next 50 years, AI must

reestablish connections with cognitive psychology if it hopes to achieve its initial goal of achieving

human-level intelligence.
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