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Machine learning is the study of computational methods
for improving performance by mechanizing the acquisi-
tion of knowledge from experience. Expert perfor-
mance requires much domain-specific knowledge, and
knowledge engineering has produced hundreds of AI
expert systems that are now used regularly in industry.
Machine learning aims to provide increasing levels of
automation in the knowledge engineering process,
replacing much time-consuming human activity with automatic techniques
that improve accuracy or efficiency by discovering and exploiting regularities
in training data. The ultimate test of machine learning is its ability to pro-
duce systems that are used regularly in industry, education, and elsewhere.

Recent successes in applying machine learning to real-world problems are
examined in this article. Five basic learning paradigms are reviewed before
focusing on one of these: methods for inducing logical rules from experi-
ence. Detailed descriptions of eight fielded applications of these methods
are given before other application efforts are described in less detail, fol-
lowed by a summary of lessons suggested by these projects.  

Five Paradigms for Machine Learning
Machine learning is a diverse field, held together by common goals and sim-
ilar evaluation methods. The general aim is to improve performance on
some task, and the general approach involves finding and exploiting regu-
larities in training data. Most evaluation is experimental in nature, aimed at
showing that the learning method leads to performance on a separate test
set, in one or more realistic domains, that is better than performance on that
test set without learning. Despite these similarities, researchers in machine
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learning tend to associate themselves with one or
another of five main paradigms, each of which shares
basic assumptions about representation, perfor-
mance methods, and learning algorithms.

One major paradigm, associated with the area of
neural networks, represents knowledge as a multilayer
network of units that spreads activation from input
nodes through internal units to output nodes.
Weights on the links determine how much activation
is passed on. The activations of output nodes can be
translated into numeric predictions or discrete deci-
sions about the class of the input. Approaches to
learning within the neural net framework typically
improve classification or prediction accuracy by mod-
ifying the weights on the links. One common learn-
ing algorithm, among the many that have been
explored, carries out gradient descent search
through the space of weights, modifying them in an
attempt to minimize the errors that the network
makes on training data. Rumelhart, Widrow, and
Lehr (Communications, March 1994) summarize
recent research on neural networks and describe
some applications of this approach.

A second framework, known as instance-based or
case-based learning, represents knowledge in terms of
specific cases or experiences and relies on flexible
matching methods to retrieve these cases and apply
them to new situations. One common scheme, known
as nearest neighbor, simply finds the stored case nearest
(according to some distance metric) to the current sit-
uation, then uses it for classification or prediction.
Case-based learning typically stores training instances
in memory; generalization occurs at retrieval time,
with much of the power residing in the indexing
scheme and the similarity metric used to identify rele-
vant cases, though more sophisticated variants may
adapt a retrieved case to the new situation. Allen
(Communications, March 1994) describes the case-
based approach, along with some recent applications.

Genetic algorithms, a third paradigm within machine
learning, typically represents knowledge by Boolean
or binary features, sometimes used as the conditions
and actions of rules. The most common interpreter
for this knowledge employs an all-or-none matching
process, using strengths associated with rules to
resolve conflicts. In some cases, a production-system
architecture lets rules apply in sequence, producing
multi-step behavior. The standard learning operators
in genetic algorithms, called crossover and mutation in
analogy to biological genetic mechanisms, generate
new candidate rules from parents that have high
strengths, where strength or “fitness’’ reflects some
measure of performance on training cases. In effect,
genetic methods carry out parallel hill climbing,
retaining a set of competing and sometimes comple-
mentary descriptions in memory. Goldberg (Commu-
nications, March 1994) reviews genetic approaches to
both machine learning and optimization problems.

A fourth paradigm, which we will call rule induction,
employs condition-action rules, decision trees, or simi-

lar knowledge structures. Here the performance ele-
ment sorts instances down the branches of the deci-
sion tree or finds the first rule whose conditions match
the instance, typically using an all-or-none match
process. Information about classes or predictions are
stored in the action sides of the rules or the leaves of
the tree. Learning algorithms in the rule-induction
framework usually carry out a greedy search through
the space of decision trees or rule sets, typically using a
statistical evaluation function to select attributes for
incorporation into the knowledge structure. Most
methods partition the training data recursively into
disjoint sets, attempting to summarize each set as a con-
junction of logical conditions. Quinlan [20] describes
one such rule-induction algorithm in some detail.

A final approach, sometimes termed analytic learn-
ing, also represents knowledge as rules in logical form,
and typically employs a performance system that solves
multi-step problems using some search process. A com-
mon technique is to represent knowledge as Horn
clauses (as in the Prolog language), then to phrase
problems as “theorems’’ and to search for proofs.
Learning mechanisms in this framework use back-
ground knowledge to construct proofs or “explana-
tions’’ of experience, then compile the proofs into
more complex rules that can solve similar problems
either with less search (using local “search-control
rules’’) or in a single step (using “macro-operators’’).
Most work on analytic learning has focused on improv-
ing the efficiency of search, but some has dealt with
improving accuracy on classification tasks.

T
he reasons for the distinct identi-
ties of these paradigms are more
historical than scientific. The dif-
ferent communities had their ori-
gins in different traditions, and
they rely on different basic
metaphors. For instance, propo-
nents of neural networks empha-

size analogies to neurobiology, case-based
researchers to human memory, students of genetic
algorithms to evolution, specialists in rule induction
to heuristic search, and backers of analytic methods
to reasoning in formal logic. One can question
whether this division benefits the field, as differences
of notation and rhetoric often obscure important
underlying similarities.

However, recent experimental comparisons
between different learning methods have helped break
down these boundaries, as has the increasing tendency
to describe the results of learning in terms of geomet-
ric decision boundaries. Many researchers (including
the current authors) now hold that neural networks are
no more “subsymbolic’’ than logical rules (though they
may produce quite different decision boundaries), that
analytic methods are not guaranteed to learn from
fewer instances than rule-induction methods (though
they do in some cases), and that logical rules are not
necessarily more easily understood by domain experts
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than other representations (though they are in some
domains). Claims are increasingly backed by careful
experimental studies rather than rhetorical statements.

The research literature reveals a number of healthy
trends along these lines. Hybrid methods that cross par-
adigm boundaries are increasingly common. These
include algorithms for inducing decision trees that con-
tain linear threshold units and techniques for trans-
forming rules into neural networks and back again.
Research on theory revision combines analytic meth-
ods’ emphasis on background knowledge with rule
induction’s emphasis on heuristic search. And recent
work on inductive logic programming, reviewed by
Bratko and Muggleton (this issue), adapts algorithms
for rule induction to such logical representations as
those used in languages like Prolog. These conver-
gences are the signs of a balanced and maturing field.

We should note that most research on machine

learning, with the exception of work in the analytic
paradigm, has focused on simple classification or pre-
diction tasks, and the most robust learning methods
are designed for such problems. The restriction to
classification is not really very severe, since one can
usually decompose a complex process such as design,
control, or planning into a sequence of individual
steps, each of which involves simple classification or
prediction. We will see that many efforts have taken
exactly this approach.

In the remainder of this article, we review some
applications of rule induction (among the most mature
of the approaches) and, in one case, analytic learning.
We focus on these paradigms not because they are
more central to machine learning or more robust than
the others, but because current surveys of neural net-
works, case-based learning, and genetic algorithms
have recently appeared in this publication (Communi-
cations, March 1994). Our goal is to complement those
articles, thus providing readers with a more complete
view of recent advances in machine learning.1

Fielded Applications of Rule Induction
To clarify the potential for rule induction in real-world
problems, in this section we consider some fielded
applications of this approach. In each case we describe
the problem, its reformulation in terms of machine
learning, and the status of the resulting knowledge

base. However, this sample far from exhausts the field-
ed applications, and in closing we mention briefly some
other recent uses of the rule-induction approach. 

Increasing Yield in Chemical Process Control
Fuel for nuclear power plants is commonly generated
by transforming uranium hexafloride gas into pellets
of uranium dioxide powder. These pellets must be of
high quality, but experts cannot predict whether a
batch of pellets will be good or bad. Researchers at
Westinghouse used statistical methods to predict pel-
let quality with partial success, but interactions
among the predictive attributes limited the effective-
ness of this approach.

Leech [14] followed a different path in which deci-
sion-tree induction played a central role. He collect-
ed samples of pellet batches of high and low quality,
along with their manufacturing control settings (e.g.,

pelleting parameters and powder characteristics),
some numeric and others symbolic. He ran these
training data through a decision-tree algorithm, then
transformed the resulting tree into rules that predict-
ed pellet quality. He repeated this process to find
rules for predicting qualitative powder attributes,
which were then used in the top-level rules, giving a
structured knowledge base.

After careful evaluation, Leech presented these rules
to experienced process engineers, who found them
acceptable, and plant technicians began using them to
control the pelleting process. As new data became avail-
able, he repeated the induction process to produce
more accurate rules. The fielded expert system led to
increased throughput, higher pellet yield, and reduced
inventory, increasing Westinghouse’s business (in
1984) by more than ten million dollars per year. 

Making Credit Decisions
Loan companies regularly use questionnaires to collect
information about people applying for credit, which
they then use in deciding whether to make loans. This
process has long been partially automated. For exam-
ple, American Express UK used a statistical decision
process based on discriminant analysis to reject appli-
cants falling below a certain threshold and to accept
those exceeding another. The remaining 10 to 15 per-
cent of the applicants fell into a “borderline’’ region
and were referred to loan officers for a decision. How-
ever, records showed that the loan officers were no
more than 50% accurate in predicting whether these
borderline applicants would default on their loans. 

These observations motivated American Express UK
to try methods from machine learning to improve the
decision process. Starting with 1,014 training cases and
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1 Unfortunately, we do not have space to review the growing literature on
learning with probabilistic representations, including trees of probabilistic
concepts (e.g., [7]) and Bayesian influence networks (e.g., [3]). But this
learning paradigm is still young and, to our knowledge, has yet to produce
any fielded applications. Readers can find additional references to the vari-
ous approaches to machine learning in http://robotics.stanford.edu/peo-
ple/langley/mlrefs.ps.
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18 descriptive attributes (such as age and years with an
employer), Michie [16] and his colleagues used an
induction method to produce a decision tree, contain-
ing around 20 nodes and ten of the original features,
that made correct predictions on 70% of the border-
line applicants. In addition to achieving improved accu-
racy, the company found the rules attractive because
they could be used to explain the reasons for decisions
to applicants. Although this project was intended as
exploratory and took under a week’s effort by the devel-
opment team, American Express UK was so impressed
that they put the resulting knowledge base into use
without further development.

Diagnosis of Mechanical Devices
Electric motor pumps play an important role in the
chemical industry, and preventive maintenance has
become a common strategy for reducing interrup-
tions. At Enichem, a chemical branch of a large Italian
oil company, diagnosticians regularly check each
pump and measure vibrations at various points to
determine whether it needs repairs. The machinery
includes a motor and a pump, whose shafts are con-
nected by an elastic joint; both motor and pump are
anchored to the ground by elastic supports containing
bearings. Typical faults include an unbalanced pump,
faulty bearings, and distortion of the base. Domain
experts at Sogesta rely on Fourier analysis of the vibra-
tions to aid them in their diagnostic decisions.

Giordana, Neri, and Saitta [8] believed that this task
would benefit from the use of machine learning. Pre-
viously, they had worked with an expert at Enichem to
produce an expert system for the diagnosis of motor
pumps, representing knowledge in terms of rules,
using traditional interviewing techniques to infer the
knowledge, and coding the information manually to
construct the rule base. During this process, the
researchers found that the expert measured vibrations
at different places on the pump, then used the result-
ing mathematical analyses in his diagnosis.

After collecting 209 examples of pump measure-
ments and getting the domain expert to label
instances as examples of various faults, Giordana et al.
ran these data through an induction algorithm to pro-
duce a new set of diagnostic rules. Their method used
causal knowledge, also gleaned from the expert, to
constrain the rule-induction process and increase the
likelihood that he would accept the results. Experi-
ments indicated that the learned knowledge base was
more accurate than the handcrafted one, and the
induced rules have now replaced the original ones in
the diagnostic system. Since their installation, there
has been a noticeable reduction in idle times due to
improper halting of machines; moreover, the learned
rules have greatly aided the less experienced person
who replaced the human expert upon his retirement.

Automatic Classification of Celestial Objects
The second Palomar Observatory Sky Survey has pro-
duced about three terabytes of image data, contain-

ing nearly two billion sky objects. In the past,
astronomers have classified and catalogued the
objects in photographic plates manually. However,
here the aim was to handle stars and nebulae consid-
erably fainter than either visual inspection or existing
computer methods could support, and attempts to
handcraft expert systems for the task had not pro-
duced reliable advances. 

In response, Fayyad, Smyth, Weir, and Djorgovski
[6] adapted a machine learning approach to the prob-
lem. First they used image-processing techniques to
describe each object in a set of images in terms of stan-
dard numerical attributes, such as object magnitude,
area, ellipticity, and statistical moments of object and
core brightness. After astronomers assigned a label to
each described object (star, galaxy, etc.), the
researchers ran these training data through a deci-
sion-tree algorithm that produced a tree for classifying
new objects. Initial results were discouraging, yielding
low accuracies on novel test objects. However, Fayyad
et al. worked with the astronomers to devise addition-
al predictive attributes, defined in terms of the others,
which increased the accuracy of the induced knowl-
edge base to 94%—above the level specified by
astronomers as necessary for scientific data analysis.

The researchers embedded the resulting classifier
in a database management system that supports a
variety of uses by astronomers, such as statistical
analyses of stellar and galactic distributions. The sys-
tem is currently being used to classify all objects in
the Sky Survey image automatically, a task that would
be impractical for humans. The system classifies
objects ranging down to some that are one magni-
tude fainter than any cataloged in large-scale surveys
to date, producing a catalog at least three times the
size achievable without machine learning.

Monitoring Quality of Rolling Emulsions
The Sendzimir mill, commonly used to roll cold steel,
is cooled and lubricated by an emulsion of water and
oil, on whose properties the quality of the steel
depends critically. For this reason, the Steel Works
Jesenice (located in Jesenice, Slovenia) continuously
monitors such properties as the oil concentration,
the concentration of iron, and the presence of bacte-
ria. Based on these measurements, the factory staff
determine the quality of the emulsion and any neces-
sary treatments, such as increasing the magnetic fil-
tering or replacing the emulsion. In complex
situations, the staff would consult an expert chemist,
but as he was not always available, they sought to man-
ually elicit his expertise through dialogue with him.

When this approach did not succeed, the develop-
ers collaborated with local university researchers on
an inductive approach, using examples of the expert’s
decisions as training data [11]. The induced decision
tree was installed in the steel works, but later, after a
change in the emulsion and its supplier, the knowl-
edge ceased to perform satisfactorily. When attempts
at manual adaptation did not work, the developers
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collected new examples of the expert’s decisions and
used the same induction method to obtain a revised
decision tree. However, they were successful only after
formulating a new set of attributes in collaboration
with the expert. The resulting knowledge base has
been in regular use at the factory since 1989.

Reducing Banding in Rotogravure Printing
Rotogravure printing involves pressing a continuous
supply of paper against a chrome-plated, engraved
copper cylinder that has been bathed in ink. Unfortu-
nately, grooves or bands sometimes develop on the
cylinder during the printing process and appear on
the printed pages. The print run must then be halted
and in some cases the cylinder replaced, at a substan-
tial cost. The reasons for banding are largely unknown,
and experts cannot reliably predict when it will occur.

Evans and Fisher [5] decided that decision-tree
induction might be useful in reducing banding, which
had become a significant problem at a plant of R.R.
Donnelley, a large U.S. printing company. Working
with technicians at the plant, they collected positive
and negative cases of banding, along with environ-
mental factors (suggested as potentially relevant by
the technicians) present in each case. Evans and Fish-
er ran these data through a rule-induction algorithm,
which constructed a decision tree to predict the prob-
ability of banding in various classes of situations.

The researchers translated the induced decision
tree into a small set of rules, which they posted on
one Donnelley plant floor for use by printing teams.
Technicians now use these rules to set ink viscosity
and other factors under their control, and this new
procedure has greatly reduced the frequency of
banding effects. For example, banding incidents
dropped from 384 in 1990 to 135 in 1991, and went
down still further to 66 in the following year, as print-
ing teams came to accept the value of the rules.

Improving Separation of Gas from Oil
When crude oil is extracted from the ground, the oil
is usually mixed with natural gas, and before a refin-
ery can begin to process the oil, it must first be sepa-
rated from the gas. However, one can configure in
different ways the size, weight, geometry, and compo-
nents of the separation vessel. British Petroleum used
decision-tree induction to determine the best settings
for these parameters as a function of the relative
amounts of gas, oil, and water, the pressure, viscosity,
and temperature of the mixture, and similar factors.

The complexity of the configuration task led the
developers to use an approach called structured induc-
tion. This scheme incorporates the decisions made by
some trees as tests on branches in higher-level trees,
but decomposes the learning task by inducing each
decision tree separately. Guilfoyle [9] reports that the
British Petroleum developers collected 1,600 training
instances, producing a knowledge base of some 2,500
rules organized into 25 sets which the company subse-
quently translated into 14,000 lines of Fortran code. By

1987, the software was in regular use at four different
sites, in ten minutes dealing with a task that had previ-
ously taken human experts over a day to complete. 

Preventing Breakdowns in Electrical Transformers
Utility companies often use large, oil-filled electrical
transformers to distribute power. However, deterio-
rating insulation, overheating, joint failure, and other
problems can cause very costly breakdowns. Experts
can predict failures accurately from gas chro-
matographs that reveal chemical traces in the trans-
former oil. To reduce these experts’ work loads,
Hartford Steam Boiler, an insurer of industrial equip-
ment, funded development of an expert system for
this task using rule induction. The resulting system,
described by Riese [22], contains 27 sets of rules that
check the validity of data, identify the presence of
symptoms, infer faults from symptoms, and suggest
corrective actions. Experimental evaluation on 859
test cases showed the induced rules agreed with the
expert’s diagnosis in all but four cases. In 1990, the
system was in regular use, automatically producing
reports for clients of the insurance company. 

Additional Fielded Applications of Rule Induction
The preceding examples constitute only a fraction of
the fielded applications of decision-tree and rule
induction, though few results are published in the sci-
entific literature. For instance, Donald Michie [15] has
reported four induced knowledge bases for diagnosing
faults in circuit boards that are in routine use in a
European electronics laboratory and that save millions
of dollars a year. Jean Hayes-Michie (personal commu-
nication, 1994) has described another expert system,
again developed through decision-tree induction, reg-
ularly used by Siemens to configure fire-detection
equipment for buildings. Gill Mowforth (personal
communication, 1993) mentions yet another system,
developed partly with decision-tree methods, now used
by a South African bank to evaluate applications for
credit cards. And David Stirling (personal communi-
cation, 1994) has used a similar approach to develop
rules for predicting effects in a rolling steel mill, now
used by BHP Stainless in Australia.

A few software companies actually specialize in the
application of decision-tree and rule induction. For
example, David Isherwood (personal communica-
tion, 1994) of Attar Software reports a system that
provides advice on share trading, currently used by
over 20 security dealers in six European countries; a
system that predicts which overdue mortgages are
likely to be paid, used by the Leeds Permanent Build-
ing Society; a fault-diagnosis system for public pay
phones that reduces visits by engineers and speeds
repairs; a system that predicts the likelihood of retain-
ing good salespeople for an insurance company; and
a system that profiles average claims for different
medical treatments, used by a health insurance com-
pany to monitor excessive claims from both clients
and providers. 
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In a similar vein, Rudolph Sillèn (personal com-
munication, 1995) of Novacast describes a support
tool for advising administrators on value-added
taxes, in use at several Swedish sites since 1992; a ther-
mal analysis system that controls the treatment of
iron alloys, used by a Swedish foundry since 1994 and
saving $50 per ton by minimizing scrap, increasing
yield, and reducing energy and additives; an advisory
system for selecting paints for metals and other coat-
ing processes, in commercial use in Sweden since
1993; a system for evaluating the capabilities of mili-
tary units that saves the Swedish Defence Material
Administration ten million crowns a year; and a sys-
tem that predicts whether breast cancer patients will
develop new tumors within five years after an opera-
tion, used since 1993 by doctors at the Central Hos-
pital in Karlstad, Sweden. Thamir Hassan (personal
communication, 1994) at Infolink Decision Services
reports that his company has also fielded a number of
systems developed through similar methods.

Other Applied Work on Machine Learning
In addition to the fielded applications described in the
previous section, we should mention a number of other
efforts that have a strong applied flavor. Although these
systems are not currently in regular use, the range of
tasks covered gives additional evidence of the robust-
ness and flexibility of rule-induction methods.

Automated Completion of Repetitive Forms
Completing forms is a tedious activity that continues
to occupy enormous time in both business and gov-
ernment. Even partial automation of the process
would produce substantial savings, but the cost of
writing a separate expert system for each form often
forestalls this approach. Hermens and Schlimmer
[10] have developed a form-filling advisory system
that learns to predict its users’ preferences through
observation. They used an incremental version of
decision-tree induction to find rules for predicting
the default entry for each field in terms of other fields
already specified. The user can always override the
predicted value, revising the default entry and pro-
viding new data for later learning. Experiments
showed that the form-filling apprentice saved up to
87% in keystroke effort and correctly predicted near-
ly 90% of the entries on the form. The system was
used by administrative staff in Hermens and Schlim-
mer’s university department for eight months, until
changes in hardware ended the project.

Supporting Maintenance of Knowledge Bases
One of the earliest sets of expert systems (for the auto-
matic design of motors, generators, and transformers
in operation at the Westinghouse Corporation in
1956) went out of use after a few years because of the
recurring cost of revising them manually to incorpo-
rate new design knowledge. As the technology of
expert systems has matured, it has become clear that
approximately half of their lifetime cost is incurred in

maintaining the knowledge base. Regular mainte-
nance is needed not only because of errors intro-
duced at coding time, but also because the problem
itself changes over time, as devices and users evolve.

For instance, Langley, Drastal, Rao, and Greiner
[13] describe a diagnostic system for computerized
tomography scanners that is used on a regular basis
by technicians at a Siemens operating company, but
in which errors in the knowledge base have started to
emerge. Langley et al. considered using existing
induction algorithms for theory revision to handle
this problem, but the available theory-revision meth-
ods were designed for knowledge represented either
as Horn clauses or decision trees, whereas the exist-
ing diagnostic system uses a fault hierarchy. However,
the researchers borrowed the search framework from
existing methods, while replacing the learning oper-
ators with ones appropriate to fault hierarchies. This
method has not yet been tested in the field, although
preliminary evaluations with synthetic but realistic
data have been encouraging.

Increasing Speed of Natural-Language Interfaces
Natural-language interfaces have become increasing-
ly common, but as their flexibility and coverage
grows, the need for efficient parsing algorithms is
growing as well. An interface that is slow to respond
to improvements in parsers can lose users. Samuelson
and Rayner [23] applied an analytic learning method
to this problem. They noted that, because the lin-
guistic knowledge in their natural-language system
was given in a definite clause grammar, it could be
easily transformed into the Horn-clause representa-
tion often used in analytic learning techniques. 

Their approach compiles a successful parse tree
for a sentence into a macro-operator that can handle
analogous sentences or phrase structures in a single
step. The system also constructs a decision tree to
index the resulting rules by the lexical categories of
their constituents. Using this approach, Samuelson
and Rayner reduced by a factor of three the time
taken to parse sentences from a large corpus based
on users’ actual queries. 

Testing Engines for the Space Shuttle
The main engines for the space shuttle require exten-
sive testing before they become operational. Each test
firing produces over 100 megabytes of data from pres-
sure, temperature, velocity, strain, and acceleration
sensors located throughout the engine. Teams of
engineers examine these data to determine whether
enough tests have been run and whether the engine’s
performance meets stringent criteria. They must
decide whether another test firing is needed, whether
to replace engine components, and so forth.

Because this evaluation process itself is expensive,
Rocketdyne used structured-induction methods (sim-
ilar to those used in the British Petroleum effort) to
construct recursively structured decision trees for the
task. Modesitt [18] describes one of the resulting sys-
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tems, designed to handle data from static-fire tests,
which contained over 1,500 rules organized into 48
rule sets. Another knowledge base, constructed to
analyze dynamic data such as frequencies and vibra-
tions, was induced in a similar fashion. Both were
embedded in a larger software system for supporting
the testing process. Field tests of the various modules
were encouraging, but also suggested extensions to
the overall system.

Forecasting Severe Thunderstorms
Although numerical models can predict large-scale
weather patterns a day in advance, local forecasting
still relies on the expertise of human meteorologists.
For example, to determine the chance of severe thun-
derstorms they use factors like the amount of low-
level moisture and the destabilization potential at low
and high levels, which they in turn analyze using such
data as the dew point, advection variables, and stabil-
ity indices. Zubrick and Riese [25] describe an expert
system for this task developed, using decision-tree
induction, by a meteorologist at the National Severe
Storms Forecast Center. The system’s hierarchical
structure supports explanation of its predictions, and
in tests during a one-week period in which five severe
thunderstorms occurred, it made more accurate pre-
dictions than traditional methods. 

Predicting the Structure of Proteins
One largely unsolved problem in molecular biology
involves predicting the secondary structure (folding) of
proteins from information about their primary amino
acid sequences. Some handcrafted theories exist, but
their predictive abilities are disappointing. Muggleton,
King, and Sternberg [19] attacked this problem using
inductive logic programming, which they felt was
appropriate for such a relational domain. Taking 16
proteins that contained only a helices, they treated
each position in these proteins as a training instance.
They also included background facts about the residues
at each position and about the physical and chemical
properties of those residues. The initial rules generated
by the induction algorithm were moderately accurate
but, after adding these rules’ predictions as back-
ground facts and repeating the induction process, the
second rule set produced better results. Another repe-
tition of this strategy gave predictive rules that were
81% accurate on four separate test proteins, consider-
ably higher than other results in the protein literature.

Automation of Scheduling in a Steel Mill
Materials scheduling in steel mills is a complex task
that experts divide into three major components:
receiving incoming materials into stockpiles; trans-
ferring materials from stockpiles to plants for crush-
ing, blending, or blasting; and routing iron ore
through screening or crushing plants. For example,
depending on the size of ore lumps in a batch, one
may crush them, blend them with other material, or
send them directly to the blast furnace. Michie [17]

describes an effort by Pohang Iron and Steel Compa-
ny, in South Korea, to construct an expert system for
this process using structured decision-tree induction.
The applications team interviewed experts to deter-
mine potentially relevant attributes for each compo-
nent task, then ran training data through a
decision-tree algorithm to produce a structured
knowledge base. The resulting scheduling system,
which includes 40 rule sets, performed comparably to
domain experts during operational tests.

Learning Strategies for Flight Control
Flying and landing even a small airplane employs com-
plex sensory-motor skills that experts have difficulty
communicating to others, but a knowledge-based sys-
tem for these tasks would be useful both as a pilot aid
and in training novices. Sammut, Hurst, Kedizer, and
Michie [24] collected traces of expert behavior on a
flight simulator, storing the pilot’s actions and the
associated sensor readings at each time step. They
treated the description for each step as a training case,
which they passed to a decision-tree algorithm after
partitioning the data into distinct tasks, such as taking
off, turning, and landing. The resulting rules, which
propose the actions for a given task and sensor read-
ings, control the simulated aircraft as accurately as the
expert they imitate, and recent studies suggest that
adding turbulence to the simulator leads to robust fly-
ing behavior across a range of situations.

Additional Applications and Related Approaches
The preceding list does not exhaust the examples of
machine learning applications. Researchers have
explored a broad range of tasks, though diagnosis has
been an especially popular problem area. For exam-
ple, El Attar and Hamery [4] have applied rule-induc-
tion methods to the diagnosis and repair of
helicopter blades. The literature abounds with exam-
ples of machine induction for medical diagnosis of
humans (e.g., [21]), and many of the online data sets
fall into this area. Despite repeated demonstrations
that the induced knowledge bases can be more accu-
rate than physicians, few of these efforts have led to
fielded systems. But the problems do not lie in the
use of induction to generate the knowledge base, for
doctors have been reluctant to adopt handcrafted
knowledge bases as well.

We have focused here on techniques that come
from the machine learning community, but indepen-
dent developments in statistics have produced similar
methods. Breiman, Friedman, Olshen, and Stone [2]
describe a set of methods for inducing decision trees,
which they tested on a variety of applied problems,
such as predicting the survival of recent heart-attack
patients. A related line of statistical work, known as
automated interaction detection [1], has been widely
used in the analysis of survey data. Similar techniques
are now included in SPSS, a widely available statistical
package, making the technology of rule induction
accessible to a wide audience.
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Some Strategies and Lessons
Efforts to apply rule induction and other machine
learning methods follow a standard pattern, but one
that has seldom been made explicit in the literature.
In this section we attempt to characterize the main
stages of the process, while noting some lessons from
the examples presented earlier. In closing, we draw
some tentative conclusions about the sources of
power in successful applications.

Formulating the Problem
The first step in using machine learning to solve any
real-world problem is to reformulate the problem in
terms that can be handled by some induction
method. Process control, diagnosis, and scheduling
are complex tasks, yet one can identify components
that involve simple classification, a task for which
there exist robust induction algorithms. Repeatedly
we see developers transforming an apparently diffi-
cult problem into a one-step classification task. In the
applications we examined, only the work by Langley
et al. and Samuelson et al. employed learning meth-
ods that dealt directly with more complex perfor-
mance elements. But neither project has as yet
produced a fielded knowledge base, whereas many of
the simpler approaches have.

A number of developers have relied on a tech-
nique known as structured induction, which involves
dividing a complex task into subproblems, then pro-
viding training data for each one separately. Zubrick
and Reese [25], Leech [14], and Modesitt [18] all
took this approach, producing performance systems
that carry out multi-step inferences, but, by factoring
them, avoid this complexity during the induction
process. Muggleton et al.’s [19] scheme, which added
predictions produced by learned rules as background
knowledge for later rounds of induction, provides an
alternative way of decomposing the learning task.

The best formulation of the problem may not
always be the one most intuitive to a machine-learning
researcher. In process-control domains, it seems nat-
ural to search for rules or trees that directly predict
the values of process variables, such as ink viscosity in
printing, from environmental ones like humidity.
However, on two of the control tasks we examined
([4, 14]), developers instead used induction to find
rules to predict directly the effects of both process and
environmental variables, apparently because users
were more familiar with this formulation. On the
other hand, similar work reported by Sammut et al.
[24] and Michie [17] took the more ‘natural’
approach, so no general conclusions can be drawn.

Determining the Representation
The second step in applying machine learning tech-
niques is to settle on an effective representation for
both training data and the knowledge to be learned.
We are not referring here to the representational for-
malism, such as decision trees or neural networks, but
to the attributes or features used to describe exam-

ples and to characterize the result of learning.
Representation engineering—finding an effective

representation of the phenomena—was central to
most of the projects we examined. In some cases, this
involved little more than talking with domain experts
and getting their advice on attributes that were likely
to have predictive value. In other cases (e.g., Fayyad
et al.’s work [6]), it involved a painstaking search of
the feature space, looking for descriptors that could
provide the discriminating power the more obvious
features lacked.

In some cases the “primitive’’ features may be com-
puted by already established methods. Fayyad et al.
relied heavily on established techniques for image pro-
cessing to transform their digital images into attribute-
value descriptions that could be handled by decision
trees. Zubrick and Reese [25] incorporated traditional
statistical measures in their work on forecasting thun-
derstorms, and Giordana et al. [8] used the output of
Fourier analysis as primitive attribute values.

Collecting the Training Data
After settling on a task and a representation, one can
collect the training data needed for the induction
process. In some domains, this process is straightfor-
ward and can even be automated, but in others it can
pose a significant challenge. In Evans and Fisher’s [5]
work on banding in rotogravure printing, the
researchers asked the printing technicians to record
periodically the values of the process variables and
the outcome, but the technicians were reluctant to
waste time collecting data on a machine that was
working well. Only after considerable effort were they
persuaded to record values when the machine was
working properly as well as when it failed. Most appli-
cation domains fall somewhere between these two
extremes, with some help from the experts being
needed to classify training data or to generate them.

The availability of data depends heavily on the
instrumentation of the systems that are being studied.
In the ideal situation, the expert system can be tied
directly into the flow of data from the operating sys-
tem’s instruments. As expert systems become more
common, instrumentation for them will increasingly
be designed into the machines they are guiding; how-
ever, for the foreseeable future, accessing the avail-
able data streams and generating data where they
have been lacking will be an important part of
applied work in machine learning.

Evaluating the Learned Knowledge
Rules induced from training data are not necessarily of
high quality. The performance of knowledge acquired
in this way is an empirical question that must be
answered before that knowledge can be used on a reg-
ular basis. One standard approach to evaluation
involves dividing the data into two sets, training on the
first set, and testing the induced knowledge on the sec-
ond. One can repeat this process a number of times
with different splits, then average the results to estimate
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the rules’ performance on completely new problems.
Kibler and Langley [12] describe experimental meth-
ods of this sort for a broad class of learning algorithms.

However, human experts are available in many
domains, and it would be foolhardy to ignore their
opinions, even when they cannot articulate their
knowledge fully. Thus, an important part of the eval-
uation process is experts’ examination of the learned
knowledge. If significant problems emerge at this
stage, they may suggest revisions to the problem for-
mulation or representation. Evans and Fisher [5]
encourage such an iterative process in developing a
fielded application, and other work we have seen
took similar approaches.

Fielding the Knowledge Base
The final stage in applications is fielding the
learned knowledge base. We intend this term in the
broadest possible sense. In some cases, the knowl-
edge acquired can be used without even embedding
it in a computer system. In Evans and Fisher’s [5]
work, a simple rule set written on paper was enough
for humans to use in making decisions that alleviat-
ed their banding problem. In other cases, as in
Fayyad et al.’s [6] and Modesitt’s [18] domains,
users expected not only computer implementation
of the learned knowledge, but also considerable
software support that had nothing to do with
machine learning.

The important consideration is that the learned
knowledge be used. Graphical interfaces may increase
the chances of use in some domains but hurt them in
others. Explanation capabilities may be welcomed by
some users but not by others. In some cases (such as
Giordana et al.’s work [8]), the existence of a fielded
handcrafted expert system has been useful in fielding
the learned knowledge base. Users who are already
convinced that a knowledge-based system is benefi-
cial are unlikely to object to having an improved
knowledge base, although the fact that machine
learning generated this knowledge may have little
meaning to them. For this reason, it is easier to intro-
duce machine learning systems as extensions of
expert systems that are already in place than to intro-
duce both the expert system and its learning compo-
nent at the same time.

We have made a number of comments on the role
of users and experts both in designing the learning
system and in securing its actual use. Everything that
has been written and said about the importance of
motivating users and domain experts, the need for
their participation in the design and application

processes, and the need to introduce computer inter-
faces that are usable and convenient for them applies
in spades to the design and application of machine
learning to industrial and other real-life situations.

Sources of Power in Applied Machine Learning
We have examined a number of applications of rule
induction, some in regular use and others moving
toward that goal. Most of these application efforts
have used well-understood, established induction
algorithms that operate on supervised, attribute-value
data, and do not employ the more sophisticated tech-
niques that dominate the research literature. Devel-
opers need not be ashamed of this fact; it is quite
appropriate that applications draw on methods that
have proved their power, reliability, and versatility in
other applications or in laboratory tests, and if simple
methods are available that have these properties, so
much the better. 

In fact, close inspection of these projects sug-
gests that much of the power comes not from the
specific induction method, but from proper formu-
lation of the problems and from crafting the repre-
sentation to make learning tractable. In these cases,
machine learning has not completely automated
the knowledge engineering process, but it has
replaced knowledge engineering with two simpler
tasks: characterizing the problem and designing a
good representation. Developers need not play
down this fact; reducing the time and effort needed
to develop knowledge-based systems, however short
this may fall of complete automation, can produce
systems of great practical value, as we have seen.

A
lthough we have concentrated
on rule-induction methods,
one might question—given our
comments about sources of
power—whether equivalent
results would not emerge if one
replaced the rule-induction
algorithms with neural net-

work, genetic, or case-based learning techniques.
Recent comparative studies in the literature, which
show roughly equivalent performance across many
domains, are consistent with this prediction. Conse-
quently, given equivalent tools, each person may
want to use the ones with which they are most com-
fortable and familiar. 

It is probably not an accident that quite different
procedures produce similar results in application.
Similar phenomena have been noticed in applying
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diverse management science tools to problems like
scheduling. Where this occurs, it may result from the
nature of the problem space. If global optima are
easy to find or if local optima are nearly as good as
the global one, then many methods may produce
comparable performance. Engineers, accustomed to
working in complex situations that do not admit ana-
lytic solutions, have long been aware of these facts.
Rivers can be spanned with suspension bridges, truss-
es, cantilevers, and other radically different designs,
and often there is no conclusive reason for choosing
one over another.

Machine learning may never entirely replace
knowledge engineering as a framework for construct-
ing knowledge-based systems, but our examples show
that significant progress toward automation has
already been made, and we anticipate that rule induc-
tion and other learning methods will become increas-
ingly prevalent as their benefits become better known.
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