
Order E�ects in Incremental Learning1. IntroductionIntelligent agents, including humans, exist in an environment that changes over time. Thus, itseems natural that models of learning in such agents take into account the fact that this processalso takes place over time. We often refer to such agents as incremental learners, in that thetemporal nature of experience leads them to incorporate that experience in a piecemeal fashion.In this chapter we discuss the notion of incremental learning from three perspectives { machinelearning, instructional theory, and experimental cognitive psychology. These �elds share a concernwith the incremental nature of learning and with the e�ects of training order on the acquiredknowledge. However, the literature has often been imprecise and sometimes inconsistent about thede�nition and nature of incremental learning, suggesting the need for a clearer treatment of theissues that arise in this context.We attempt to clarify the situation in the following section by presenting some de�nitions ofincremental learning and introducing some distinctions among types of order e�ects. We then turnto a more detailed discussion of two such types of e�ects from the vantage points of the di�erent�elds, briey reviewing some relevant work in each case. Finally, we outline some directions forfuture research on this intriguing topic.2. The Nature of Incremental LearningMost research on incremental learning rests on three assumptions, which are often implicit inthe literature in this area. Each of these assumptions appears to hold for human learners, andthey seem equally desirable for arti�cial ones. First, the agent should be able to use its learnedknowledge to carry out its performance task at any stage of learning. Second, the incorporation ofexperience into memory during learning should be computationally e�cient. Finally, the learningprocess should not make unreasonable space demands, so that memory requirements increase as atractable function of experience.12.1 De�nitions of Incremental LearningThe literature also contains di�erent de�nitions of incremental learning, sometimes implicit, whichseem tied to the above assumptions. We should briey review these alternatives, in hopes of decidingwhich one is most appropriate for our current analysis. Perhaps the most common de�nition dealsonly with the �rst of the above assumptions.1. In most of examples, the term \experience" translates to \training instance". But because we will see other sensesof the former term elsewhere in the chapter, we will use it in our de�nitions.



Order Effects in Incremental Learning 2De�nition 1 A learner L is incremental if L inputs one training experience at a time.Clearly, for any learner of this sort, one can interrupt the training process and ask the agent to useits acquired knowledge to make predictions or carry out some other task. Such a learner certainlyappears incremental to an external viewer.However, note that one can easily adapt any learning algorithm to �t this de�nition, includingones that process many instances at a time, by simply storing the instances observed so far andrunning the method on them. For example, Schlimmer and Fisher (1986) describe such a variantof Quinlan's (1986) nonincremental ID3 algorithm for decision-tree induction. This system simplyruns ID3 as a subroutine on the �rst training case, the �rst two cases, the �rst three cases, andso on, thus mimicking the external behavior of an incremental learner. One can adapt this ideato make any nonincremental learning algorithm appear incremental by our �rst de�nition. In fact,the above de�nition says more about the nature of the learning task than about the learner itself.Within the machine learning literature, particularly that on computational learning theory, thissituation is sometimes referred to as an online learning problem (Littlestone, 1987).Clearly, it seems desirable to distinguish between arbitrary methods that handle online tasks andones that better reect our intuitions about incremental processing. A more plausible de�nitionwould incorporate not only the �rst assumption but also the second one given above.De�nition 2 A learner L is incremental if L inputs one training experience at a time and doesnot reprocess any previous experiences.This version actually places a constraint on the learning mechanism itself, in that it can processeach experience only once. We might relax this constraint somewhat to allow limited reprocessing,provided we do so cautiously. The important idea is that the time taken to process each experiencemust remain constant or nearly so with increasing numbers, in order to guarantee e�cient learningof the sort seen in humans.2Although this de�nition is a considerable improvement, it still violates some important intuitions.For example, Mitchell's (1982) candidate elimination algorithm for learning logical conjunctionsprocesses instances one at a time and does not need to reprocess them. However, it accomplishesthis feat by retaining in memory a set of competing hypotheses that summarize the data, and itreprocesses these hypotheses upon incorporating each training case. This presents no problem byitself, but Haussler (1987) has shown that the number of such hypotheses can grow exponentiallywith the number of training items, which seems contrary to our notions of incrementality.2. Note that even when learning method is incremental in this sense, one may not use it in an online fashion. Forexample, the weight-updating scheme used in backpropagation for neural networks does not reprocess instancesby itself, yet researchers typically rerun the algorithm over the training set many times, thus violating our secondassumption about reprocessing.



Order Effects in Incremental Learning 3We can avoid the inclusion of such algorithms by incorporating the third of the above assumptionsinto our de�nition.De�nition 3 A learner L is an incremental if L inputs one training experience at a time, doesnot reprocess any previous experiences, and retains only one knowledge structure in memory.This formulation rules out learning methods that retain competing descriptions, such as the can-didate elimination algorithm, as well as methods like Winston's (1975) that carry out explicitbacktracking. Learners that are incremental in this sense retain no set of alternatives and no mem-ory of where they have been; they can only incorporate the next training item and move forwardin response. For this reason, Langley, Gennari, and Iba (1987) refer to them as incremental hillclimbing approaches to learning.We will restrict ourselves to this third de�nition of incremental processing in the remainder ofthis paper. We maintain that any viable theory of human learning must be based on this de�nition,and we will see that many common learning methods satisfy it, though they are seldom presented inthese terms. We can loosen our de�nition somewhat to allow storage of a few competing knowledgestructures, or to allow a current structure with a number of possible successors, from which one isthen selected. These variations still restrict memory to a manageable size.2.2 De�nitions of Order E�ectsLearning mechanisms that rely on incremental hill climbing have one central characteristic that hasreceived considerable attention: their behavior tends to be a�ected by the order of experience. Wecan state this notion more precisely:De�nition 4 A learner L exhibits an order e�ect on a training set of experiences T if there existtwo or more orders of T for which L produces di�erent knowledge structures.The origin of such e�ects is best understood in terms of search through the space of knowledgestructures. An incremental learning method must make decisions about which path to follow (whichstructure to create) based on samples of the data. Di�erent early samples may lead the learner downquite di�erent paths, and later experiences may not be su�cient to counteract them.3 Figure 1 (a)shows the paths through the space of knowledge structures for two di�erent orders of the sameexperiences; because the learner arrives at di�erent structures, this constitutes an example of anorder e�ect. In contrast, the paths in Figure 1 (b) diverge initially but lead to the same structure,meaning no order e�ect has occurred.3. We must distinguish between behavior di�erences that result from order e�ects on a given training set andthe quite distinct ones that result from di�erent samples of data. The latter can occur even with the mostnonincremental of learning methods.
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Figure 1. The knowledge structures generated by an incremental learner for two di�erent orders of trainingexperiences when (a) an order e�ect produces two di�erent structures and (b) when the absenceof an order e�ect produces the same structure.Our de�nition of order e�ects focuses on particular training sets and their presentation order,but we can rephrase things to emphasize the algorithm itself:De�nition 5 An learner L is order sensitive if there exists a training set T on which L exhibitsan order e�ect.Similarly, we can say that a learner is order independent if it never exhibits an order e�ect. Thisformulation takes an all-or-none stance, but clearly one can also talk about degrees of order sensi-tivity, in terms of the number of training sets and the number of orders in which such e�ects occur,as well as the resulting distance between the learned structures.One can also talk about the implications of order e�ects on behavior, using some performancemeasure M that reects the usefulness of the knowledge learned from experience, such as accuracyon test cases. It seems reasonable to assume that some order e�ects, although producing di�erentknowledge structures, have relatively little impact on performance.De�nition 6 An order e�ect for learner L on training set T is benign with respect to measure Mif all orders of T produce knowledge structures of (nearly) equal scores on M .In contrast, we can say that an order e�ect is malignant if di�erent orders produce quite di�erentresults on the performance measure. Naturally, malignant order e�ects hold greater interest formost learning researchers, especially those with prescriptive rather than descriptive goals.2.3 Levels of Order E�ectsThere exist at least three di�erent levels at which order e�ects can occur, and thus three di�erentways in which we can instantiate the term experience in the previous de�nitions. Recall that most
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Figure 2. Incremental processing can occur at three levels of temporal resolution: with respect to the at-tributes used to describe to instances, for instances of the concepts being learned, and for theconcepts themselves.learning research deals with the acquisition of concepts from training instances that are describedin terms of attributes or features. Incremental processing can occur, and thus order e�ects canresult, with respect any of these levels, as depicted in Figure 2.At the �nest temporal resolution, the agent can process the attributes of each instance one at atime. In some frameworks, such as discrimination networks, attribute order can a�ect both perfor-mance and learning. Clearly, humans have limited attentional resources, so that one might expectthat researchers would give high priority to modeling the e�ect of attribute order. Nevertheless,though many systems give di�erent importance to di�erent attributes, only a few (e.g., Feigenbaum,1963; Gennari, 1991) acknowledge that they can be observed in di�erent orders, and even thesedo not explicitly examine the e�ects of observation order on learning. For this reason, we will nothave much to say on the topic here.At the intermediate level, the agent can process training instances one at a time. This is clearlythe most common interpretation of both incremental learning and order e�ects within the literature,and we consider it at some length in the next section. We will see that there exist machine learningalgorithms that process instances in an incremental manner, psychological studies of the e�ects ofinstance order, and hypotheses about the uses of instance order in education, each of which shedsa di�erent light on the nature of incremental processing.At the highest level, the agent can learn distinct concepts one at a time, and their order ofacquisition can make the learning task more or less di�cult. There exists some work on thistopic within machine learning and cognitive psychology, but it has received perhaps the most



Order Effects in Incremental Learning 6attention within the education paradigm, where courses of instruction typically order concepts insome principled fashion. We devote Section 3 to the incremental learning of di�erent concepts.3. The E�ects of Instance OrderResearch on the e�ects of instance order can approach the problem from di�erent perspectives.Much of the work takes a prescriptive slant, treating order e�ects either as something to be elimi-nated or something to use pro�tably. Another alternative is to treat order e�ects as a phenomenonto be studied from a purely descriptive angle. Below we consider each of these vantages in turn.3.1 Mitigating the E�ects of Instance OrderIf one's aim is to engineer an autonomous agent that learns from experience in a robust manner,then the e�ects of instance order { at least malignant ones { are undesirable. For this reason, manymachine learning papers on incremental methods discuss schemes for eliminating or mitigating theorder sensitivity of induction algorithms. Researchers have explored a variety of approaches to thisissue within the framework of incremental hill climbing that we de�ned in Section 2.The simplest scheme involves making strong assumptions about the nature of the target concept,so that di�erent orders of the same training data always produce the same result. For example, someearly work on the induction of logical concepts focused on conjunctive concepts, and algorithmsfor this task which move from speci�c to general hypotheses show no order sensitivity, at leastwhen used on attribute-value descriptions. Similarly, the naive Bayesian classi�er (Langley, Iba,& Thompson, 1992) assumes both a single probabilistic summary for each class and independenceamong attributes; this lets it use a simple learning method that updates counts for each observedcombination of class and attribute value, which makes it completely insensitive to training order.Within the area of grammar induction, Angluin (1977) describes an incremental algorithm forlearning the restricted class of k-reversible grammars; this technique adds a new chain of states toan existing �nite-state machine for each sentence it encounters, then merges states in a way thatalso guarantees against order e�ects.However, some researchers �nd such representational restrictions distasteful (despite their excel-lent performance on many domains), and so have considered other responses to the problem. Analternative approach relies on background knowledge to constrain the learning process and thus tomitigate order e�ects.4 When used to improve classi�cation accuracy, explanation-based methodsconstitute an extreme version of this idea (e.g., Flann & Dietterich, 1989). In this scheme, eachtraining case leads to the creation of one rule, and the order in which they are added to memory4. Of course, because incremental methods process experiences sequentially, the results of learning from the �rst ninstances constitutes a form of background knowledge for the n+ 1st instance. Here we refer to knowledge thatis available before the learning process begins.
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Figure 3. Learning operators used by Fisher's (1987) Cobweb to modify the structure of a probabilisticconcept hierarchy: (a) extending the hierarchy downward; (b) creating a new sibling at the currentlevel; (c) merging two existing concept; and (d) splitting an existing concept. Operators (c) and(d) are explicitly designed to reduce order e�ects.does not a�ect the result. Less extreme variations of this approach are also possible. For example,McKusick and Langley (1991) show that providing a partial concept hierarchy can reduce ordere�ects in incremental clustering systems, and we expect similar results would occur with otherlearning methods. Cornuejols (1993) presents an insightful formal analysis of the conditions underwhich background knowledge reduces order e�ects.Yet another response incorporates bidirectional learning operators that can undo early decisionsthat were based on nonrepresentative data. For example, many logical induction methods includeboth operators for making rules more general and more speci�c (e.g., Iba, Wogulis, & Langley, 1988),and algorithms for hierarchical clustering often include both operators for merging and splittingnodes in a taxonomy, as shown for Fisher's (1987) Cobweb algorithm in Figure 3. Such dualoperators give learners the ability to emulate backtracking in certain situations, even though theyhave no memory of their previous knowledge structures. Gennari et al. (1989) present evidence thatsuch operators reduce order e�ects in one clustering system, and their inclusion in other systemssuggests their usefulness there as well.A fourth framework takes a more conservative approach, retaining a current hypothesized knowl-edge structure and a manageable set of potential successor hypotheses, then waiting until one hasobserved enough training cases to determine with con�dence the best successor. For example,Schlimmer and Fisher's (1986) approach to incremental decision-tree induction retains statistics onalternative attributes and extends the tree downward only when one attribute appears statisticallybetter than the others. In a similar manner, Iba (1987) collects statistics on macro-operators, mak-



Order Effects in Incremental Learning 8ing sure they will aid problem-solving e�ciency before adding them to memory. Greiner (1992)describes a very general formulation of this idea; his approach to incremental hill climbing needsno bidirectional operators because it collects enough training cases to (nearly) always makes theright decision at each step in the search process.Another class of methods attempts to reduce order e�ects by storing multiple, complementarydescriptions in memory. Like the previous approach, this relies on the idea that one should notcommit to a single knowledge structure early on, before the training data clearly indicate that oneis better than the others. For example, some clustering systems create directed acyclic graphs thatcan sort instances in multiple ways (e.g., Levinson, 1985; Martin & Billman, 1994). In its extremeform, this approach violates the spirit of incremental hill climbing in that the size of the knowledgestructure can grow very rapidly as a function of the number of training cases. However, placingrestrictions on the number of complementary descriptions can ensure manageable memory whileretaining the bene�ts of a least-commitment approach.A �nal approach concerns the notion of distributed representations in multilayer neural networks.The standard method for learning in such networks, backpropagation, is typically run through thetraining set many times, rather than altering the network to master each case before presentingthe next one. McClosky and Cohen (1989) and Ratcli� (1990) have shown that, when trained inthis latter mode, backpropagation exhibits \catastrophic interference", in that learning each newitem causes the network to forget those learned previously. French (1993) argues that this e�ectresults from the distributed representation of knowledge embodied in the network's hidden units. Heshows that one can reduce this order e�ect by encouraging backpropagation to produce weights thatgive less distributed activations among hidden units. French also suggests that Kruschke's (1993)approach, which uses an inverse exponential activation function, avoids catastrophic interferencefor the same reason.3.2 Instance Order in Instructional DesignNot all researchers view order e�ects as something to eliminate; some instead see them as givenconstraints that one must take into account during instruction. This attitude is especially prevalentamong those in education who study instructional design, but it also occurs in some work on machinelearning. Research in this tradition involves the design of presentation orders that will maximizethe rate or quality of learning by simplifying the acquisition task.5One simple technique along these lines involves the idea of a near miss, which is a negativeinstance of some concept that almost but does not quite satisfy the concept's de�nition. Winston(1975) posits that presenting a positive training case followed by near misses will simplify theinduction process, as this lets the learner easily detect individual di�erences between the positive5. One should not confuse the positive use of order e�ects during instruction with the notion of benign e�ectsdiscussed above. In fact, malignant e�ects are most relevant for instructional design.



Order Effects in Incremental Learning 9instance and the negative ones that are necessary to the concept de�nition. Unfortunately, thistechnique makes sense only for concepts with logical de�nitions, making it inapplicable to manynatural categories and to many learning methods. Neri and Saitta (1993) describe a more generaltechnique for selecting training cases to increase learning rates.Another variant on this approach assumes that learners will fare better if presentation orderalternates among instances of di�erent categories than if presented with many cases of one categoryfollowed by those of another. The intuition here is that observation of contrasting training cases willencourage introduction of the appropriate distinctions. McKusick and Langley (1991) show that thistraining regimen increases the learning rate for a probabilistic clustering method by encouragingthe creation of proper distinctions high in the concept hierarchy. A related idea underlies thestandard `epoch' training for backpropagation in neural networks, which iterates through trainingcases many times in order to avoid the \catastrophic interference" described earlier.VanLehn (1987) observes that, in teaching complex concepts and procedures, many textbookspresent them \one disjunct at a time". That is, if the target structure involves a number ofdistinct components that cover di�erent situations, these components are presented separately,with each one being learned before turning to the next. The assumption here is that learninga number of simple concepts or procedures, when identi�ed as such, is easier than acquiring asingle complex structure. Super�cially, at least, this advice seems to conict with the alternationstrategy recommended above, though VanLehn focused on procedural tasks and the alternationscheme comes from work on concept learning.In some domains, training cases can themselves have di�erent levels of complexity. Porat andFeldman (1991) take advantage of this fact to simplify the problem of grammar induction bypresenting simple sample sentences before more complex ones. Like the \one disjunct" strategy,this training order lets the learner master parts of the target grammar on simple cases before beingchallenged by harder ones. Elman (1991) uses a similar training regimen for connectionist learningof phrase structure grammars, in which he gradually increases the proportion of complex sentencesin the training set. This approach also seems recommended for memory-limited agents (includinghumans), as it lets them establish chunks during the early phases that aid retention during laterperiods.Rendell (1986) and Iba (1989) draw on a similar insight in their work on learning problem-solvingstrategies. Their systems are initially presented with relatively easy problems which they can solvewith little domain knowledge; they then use the resulting solution as material for learning. Oncethe systems have acquired some knowledge in this manner, they are given more di�cult problemsto drive further learning. This \bootstrapping" approach would seem generally useful wheneverthe agent must learn from the results of some search process.Another approach to instruction hypothesizes an accretion theory of learning in humans (Rumel-hart & Norman, 1978), in which new knowledge is added to existing structures. According to thistheory, new experiences that have some connection with known memory structures are stored and



Order Effects in Incremental Learning 10accessible, whereas experience that makes little or no contact is e�ectively lost. This suggests atraining regimen in which one �rst presents information about core ideas, then gradually presentselaborations that build the learner's knowledge base outward around the edges.Finally, some research in both education and machine learning emphasizes the power of lettingthe learner select its own experiences. Plotzner (1990) presents evidence that students acquireknowledge about physics more rapidly when they control the order of presentation. Similarly,Carbonell and Gil (1987), Gross (1991), and Scott and Markovitch (1991) show the advantages ofexperimental control for automated learning systems. The basic insight behind this approach is thatthe learner often knows more about its own hypotheses, and thus about the areas of uncertainty,than does the instructor. Thus, learner-selected instances can provide more information and thusfaster acquisition than teacher-selected experience.3.3 Instance Order and Human BehaviorUntil now, we have focused on techniques for reducing order e�ects in machine learning systemsand intuitively plausible approaches for taking advantage of such e�ects during instruction. Both ofthese perspectives have a prescriptive avor. However, there also exist experimental results aboutthe e�ect of instance order on human learning, though descriptive studies of this sort have beenrelatively rare.The literature on human memory touches on order e�ects, though not as directly as one mightlike. There is clear evidence of both retroactive inhibition (e.g., M�uller & Pilzecker, 1900) { thatlearning on later items can hurt retrieval of ones mastered earlier { and the related phenomenon ofproactive inhibition { that items mastered early on can inhibit learning on later ones. Both formsof interference are more likely when the items are similar in some fashion, thus allowing confusion.Studies of mass vs. distributed practice are also somewhat relevant to order e�ects, though theywere not designed with this issue in mind. Most important, studies of this sort have emphasizedrote memorization rather than concept acquisition or similar forms of induction.A few studies of category learning have dealt with order e�ects more explicitly. Elio and Anderson(1984) considered two presentation orders of training instances for categories with graded structure,in which some cases were more typical than others. In one condition, they �rst presented a sampleof highly typical instances, followed by a sample containing a mixture of typical and less typicalcases, and �nally a sample that was fully representative of the category. In another condition,each successive training sample was representative. The authors found that, when instructed toformulate explicit hypotheses, subjects learned the target concepts better (in terms of accuracy andtypicality ratings) from purely representative samples. In contrast, when told to simply rememberthe individual instances, they did better when �rst seeing only typical samples. In later work, Elioand Lin (1994) modeled this interaction e�ect with two distinct learning strategies, one involvingrule induction and the other using an instance-based mechanism.



Order Effects in Incremental Learning 11Clapper and Bower (1994) report interesting results on an unsupervised learning task involvingtwo simple logical conjunctions, using a performance criterion measuring ability to distinguishattributes with constant values for each category from those which vary. They found that subjectsgiven training cases from one category followed by those from the other category learned morerapidly than did subjects given training instances that interleaved the two categories. Clapper andBower suggested that the �rst presentation order lets the learner acquire norms for one category,and then be surprised when instances from the second category depart from those norms. Notethat this �nding directly contradicts the alternation method discussed earlier, which was found toaid some machine learning algorithms; thus, it suggests that these methods provide poor models ofhuman learning, at least in this domain.Studies of human problem solving have also revealed some intriguing e�ects of problem order.Luchins' (1942) experiments with the water jug task showed that, when given a set of trainingproblems that had only one solution, subjects later solved other problems that had alternativesolutions in the same way. However, this Einstellung e�ect did not occur when they encounteredboth types of problems early in training. The order of problem presentation also inuenced thetime it took subjects to extinguish this behavior. Jones (1989), Langley and Allen (1991), andothers provide computational accounts of Luchins' basic phenomena in terms of early acquisitionof search-control knowledge and subsequent use of that knowledge to bias problem solving.In summary, experimental psychology has given less attention to the e�ects of instance orderthan machine learning or educational theory, but the studies that have been reported call intoquestion some of the assumptions of the latter two �elds. Clearly, a fuller descriptive account ofthe incremental nature of human learning would complement, and possibly redirect, the prescriptivework in other areas.4. The E�ects of Concept OrderAs we noted earlier, one can impose an ordering not only the training cases provided for learning,but also on the concepts that are to be learned. This issue arises only in more complex learningtasks, where some concepts can be de�ned or grounded in terms of other concepts.6 Work in thistradition has focused almost exclusively on the advantages of certain presentation orders, ratherthan on the e�ects of di�erent orders or on techniques for overcoming them.4.1 From Simple to Complex ConceptsMost research in this area has assumed that the preferable training order moves from simple tocomplex concepts. That is, if some high-level concept can be formulated in terms of lower-level6. We intend the term \concept" here in the broadest sense possible, to cover not only static structures but alsotemporal ones like procedures and grammars.



Order Effects in Incremental Learning 12ones, then learning will be aided if one masters the simpler concepts �rst. A number of machinelearning e�orts build on this idea. For example, Sammut and Banerji (1986) describe an incrementalapproach that �rst learns simple logical concepts from supervised data, then uses the learned rulesto reexpress instances of more complex concepts at higher levels of abstraction. Elio and Watanabe(1991) report another learning algorithm that operates along similar lines. In both cases, theintuition is that augmenting the instance description with new features, which must �rst be learnedthemselves, can ease the task of learning complex concepts.The educational theorist Gagne (1966) proposed that human learning occurs in a similar manner,and recommended the design of instructional sequences in which students mastered component skillsbefore attempting to learn about the more complex procedures that require them.7 For the domainof solving �rst-order algebraic equations, he presented a skill hierarchy with eight distinct levels,ranging from symbol recognition and number use at the lowest tier, through intermediate skills likesimplifying functional expressions and adding numbers to both sides, to equation solving at thehighest level. However, as Singley and Anderson (1989) note, experimental support for Gagne'stheory has generally been di�cult to obtain. In particular, some \scramble" studies have failedto �nd any di�erences between training regimens that incorporate the component-�rst scheme andones that order skills randomly.4.2 From Complex to Simple ConceptsNot all researchers have assumed that components are best learned before composite concepts orskills. Shapiro's (1987) technique of structured induction recommends exactly the opposite, atleast in the use of decision-tree induction to construct knowledge bases. He found that domainexperts could provide examples for use as training cases, but that they preferred to describe themin terms of high-level attributes. After constructing a decision tree from these cases, one could thenget experts to provide lower-level examples as training data for concepts that de�ned the initialattributes. The result of this top-down process is a recursively de�ned decision tree that eventuallygrounds out in observable features. Langley and Simon (in press) note that structured inductionhas been used to construct a number of �elded knowledge bases.Some educational psychologists have proposed analogous training sequences for human instruc-tion. For example, both Bruner's (1966) spiral curriculum and Reigeluth and Stein's (1983) elabo-ration theory recommend that students �rst be taught very general skills, and only them be showntechniques for instantiating them. There have been fewer experimental evaluations of such top-down organizations than for bottom-up ones like Gagne's, but clearly they deserve equal attention,as do mixed instructional strategies.7. Some theories of human learning, such as Rosenbloom and Newell's (1987) chunking account, assume that simpleconcepts are learned before more complex ones but take no position on the e�ect of training order.



Order Effects in Incremental Learning 135. Directions for Research on Incremental LearningThe study of incremental learning and order e�ects clearly has important implications for both theconstruction of arti�cial intelligent agents and the design of instructional sequences for humans.The work to date has revealed some promising approaches in both areas, but much more remains tobe done before we understand the full nature of incremental learning. We can group the importantlines of research still needed into three main classes.First, the �eld needs better measures for detecting order e�ects in incremental learners, whetherhuman or machine. Learning curves, which describe performance as a function of the number oftraining experiences, will likely occupy a central role in this e�ort. Typically, the mean values oflearning curves are used to reveal the rate of learning, but such curves can also suggest the presenceof order e�ects. Briey, one can expose learners to the same training data in di�erent orders, thenexamine not the mean but the variance along the resulting curve; a high variance suggests a strongsensitivity to training order in the learner. However, this is only one promising technique, andothers may prove just as useful.We also need better descriptive languages for characterizing the paths taken by incrementallearners through the space of knowledge structures, and better techniques for identifying the choicesresponsible for order e�ects. For this, we need to look more closely at individual training ordersand to compare the behaviors they produce in the learner. If order e�ects are absent within certainsubsets set of training orders but present across these subsets, then the di�erences among thosesets may be useful in describing the cause of the e�ects. Again, this approach is only one amongmany possible methods for analyzing sequential behavior in learning.Finally, we need better theories about the sources of order sensitivity that hold across broadclasses of incremental learners. Existing accounts revolve around notions of alternating vs. batchorders, typical vs. atypical instances, and simple vs. complex problems. These provide reasonablestarting points, but they are more like simple hypotheses than coherent theories. The view ofincremental learning as hill-climbing search through a space of knowledge structures, with decisionsa�ected by the most recent experience, holds the most promise for a uni�ed account of order e�ects,though the exact nature of this account remains far from clear.We encourage researchers from education, cognitive psychology, and machine learning to lookmore closely at the nature of incremental processing, and to build on the growing body of work inthis area. We hope that a joint e�ort by scientists from all three disciplines will lead to insightsthat would not be possible by studying the e�ects of training order from a single perspective.
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