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Abstract
In this paper we describe Icarus, an ar-
chitecture for physical agents that uses hi-
erarchical skills to support reactive execu-
tion. We review an earlier version of the
system, then present an extended framework
that associates reward with stored concepts
and utilizes a model-based approach to select
among instantiated skills. Learning involves
estimating expected the durations and suc-
cess probabilities from execution traces. We
conclude with comments on related work and
plans for further extensions.

1. Introduction

Icarus is a cognitive architecture for physical agents
that unifies ideas from a number of traditions. The
framework includes a commitment to the relational
representation of knowledge elements, the association
of numeric value functions with logical descriptions,
and the hierarchical organization of these elements in
long-term memory. The system also invokes cognitive
mechanisms to modulate the reactive execution of be-
havior and incorporates incremental learning processes
that are interleaved with performance. Our framework
borrows ideas from a number of traditions but com-
bines them in a unified way.

In the next section, we review an early version of the
architecture, Icarus/3, that introduced a model-free
method for learning value functions associated with hi-
erarchical relational skills. After this, we describe the
Icarus/4 formalism, which incorporates a number of
extensions. These include a model-based approach to
the execution of hierarchical relational skills and asso-
ciated learning methods. We clarify the framework’s
assumptions about representation and the nature of
reward, then present the mathematics underlying its
decision making. In closing, we discuss related work
and outline directions for additional research.

2. Previous Results with Icarus/3

Our previous implementation, which we will call
Icarus/3, is an architecture for reactive control that
encodes knowledge in distinct skills that are organized
in a hierarchy. As Shapiro et al. (2001) describe, each
skill has a set of objectives, a set of requirements, and
a set of alternative means that may achieve the ob-
jectives when the requirements are met. Each field
contains relational literals that can share generalized
arguments, much as in a logic program, and that may
refer to primitive percepts or to other skills. Terminal
nodes in the hierarchy are skills in which primitive per-
cepts appear in the requirements and objectives, and
in which executable actions appear in the means field.
Each skill also has a value field that specifies expected
reward as a linear function of sensory variables.

Like other cognitive architectures, Icarus/3 operates
in cycles. In each case, processing starts from a high-
level skill provided by the user and descends through
the skill hierarchy to find allowable paths. A path
is allowable only if each skill instance it contains has
its requirements met and its objectives unmet. The
system calculates the expected value of each path by
combining its skill’s functions with current sensory val-
ues, then selects the best-scoring path for execution.
The resulting actions influence the environment, which
may also change on its own, and the system repeats
this process on successive cycles. The architecture uses
its hierarchical structures to decide which actions are
allowed, but, within these constraints, is fully reactive.

Icarus/3 learns the value function associated with
each skill from delayed reward. To this end, it utilizes
a variant of the SARSA algorithm (Singh et al., 2000)
that operates on a path though the hierarchy rather
than state-action pairs. Reward is propagated not only
backward through time but also upward through skills
along the path. The implementation utilizes eligibil-
ity lists, normalizes sensor values at run time, and
learns linear approximations for value functions rather



than tabular forms. Experiments with a simulated
highway driving task showed this approach learned
effective policies more than 100 times faster than a
non-hierarchical method. However, although the sys-
tem supported relational representations, the highway
driving domain did not exercise this capability.

3. The ICARUS/4 Framework

Although our work with Icarus/3 introduced impor-
tant ideas, it also overlooked some others that we are
incorporating into its successor. Icarus/4 extends
the representation of knowledge by adding logical con-
cepts, which let the system encode more abstract be-
liefs about the environment. Like skills, concepts are
organized into a hierarchy, but in this case the termi-
nal nodes correspond to primitive percepts. Skills can
still invoke other skills, but a skill’s requirements and
objectives can refer only to concepts.

More important, the extended framework includes ex-
plicit support for describing relations among physi-
cal objects, and it utilizes a model-based approach to
skill selection and learning, rather than the model-free
method used by its predecessor. In addition, the new
architecture factors the reward function into different
components, each associated with a concept in long-
term memory. Thus, Icarus/4 has a considerably
richer scheme for representing and reasoning about
states and activities. In this section, we discuss the
key aspects of the new architecture.

3.1. Representational Assumptions

Our framework makes a number of assumptions about
how the agent encodes short-term perceptions and be-
liefs, as well as long-term knowledge. These differ sub-
stantially from those made in traditional treatments of
reinforcement learning, which emphasize Markov de-
cision processes. Instead, our formulation combines
probabilities with ideas from traditional AI planning.

1. The agent observes a set of percepts, each of which
specifies an object in its environment, along with
attribute values (continuous or discrete) that are
associated with that object. For example, in the
blocks world, a percept would be encoded as (block
A xpos 10 ypos 4 height 1 width 1). Objects are the
only legitimate arguments of concepts and skills.

2. The agent has a set of primitive concepts, each of
which specifies one or more arguments and which
is defined as a conjunction of logical or arithmetic
tests among attribute values of those arguments.
Table 1 shows the primitive concept on, which de-
scribes a spatial relation between two blocks.

Table 1. Some Icarus concepts for the blocks world, with

variables indicated by question marks.

(on (?block1 ?block2)
:percepts ((block ?block1 xpos ?x1 ypos ?y1)

(block ?block2 xpos ?x2 ypos ?y2
height ?h2))

:tests ((equal ?x1 ?x2) (>= ?y1 ?y2)
(<= ?y1 (+ ?y2 ?h2))))

(clear (?block)
:percepts ((block ?block))
:negatives ((on ?other ?block)))

(three-tower (?x ?y ?z)
:percepts ((block ?x) (block ?y) (block ?z))
:positives ((on ?x ?y) (on ?y ?z))
:reward 10)

3. The agent has a set of high-level concepts, each of
which specifies one or more arguments and which
is defined as a logical conjunction of primitive con-
cepts, other high-level concepts, or their negations.
Table 1 shows the high-level concept clear, which
describes a single block but also states that no other
block may be on it. The concept three-tower de-
scribes a more complex relation among three blocks.

4. The agent has a set of durative skills, each of which
specifies one or more arguments and a set of effects,
separated into concepts that become satisfied and
ones that become unsatisfied as a result of its ex-
ecution. Table 2 presents four such skills from the
blocks world and their effects.

5. Every skill has one or more decompositions, each
of which specifies preconditions, stated as a con-
junction of concepts, that must hold for it to be
executed. The table also shows that puton has two
such decompositions, whereas the primitive skills
have only one.

6. Each decomposition of a high-level skill specifies one
or more primitive or high-level subskills, and the
order in which they should be invoked; each decom-
position of a primitive skill specifies a single action
that it should execute. Table 2 gives the subskills
for each decomposition of puton and the actions as-
sociated with pickup, unstack, and stack.

7. Each primitive skill decomposition has an associ-
ated probability of achieving the skill’s effects and
an expected time to completion, provided it is ex-
ecuted when its preconditions are satisfied. The
table indicates that, for this variant of the blocks
world, pickup, unstack, and stack have high but
not guaranteed probabilities of success, along with
their expected execution time in cycles.



Taken together, the last four items define an implicit
AND/OR tree in which each skill corresponds to a set
of OR branches, each decomposition corresponds to
a set of AND branches, and primitive decompositions
constitute terminal nodes.

3.2. Reward Assumptions

The framework also makes some important assump-
tions about the nature of reward and its calculation.

1. Rewards are associated with concepts in the agent’s
long-term memory, and thus are factored into sep-
arate components. Here we assume scalar rewards,
but, more generally, a concept may specify a reward
function as some arithmetic combination of its ar-
gument’s attribute values.

2. The global reward on each time step is the sum of
rewards produced by the agent’s satisfied concepts.
Because a given concept may match with more than
one set of objects as arguments, each such instance
contributes to the total reward.

3. Some components of the global reward function
may hold across a domain, whereas other compo-
nents may be specified anew for each problem the
agent encounters, corresponding to different goals
and constraints. For instance, the reward of 10 as-
sociated with concept three-tower in Table 1 may
hold only for a particular problem.

Note that this formulation does not view reward as
coming from the environment, as in most treatments.
Rather, the environment contains objects, which the
agent perceives and uses to calculate its reward inter-
nally. This seems more natural than assuming that a
single number arrives from an external source.

3.3. Performance Assumptions

We can now turn to how the agent utilizes these knowl-
edge structures to respond to complex problems. We
assume the agent operates in discrete cycles which take
some fixed time that corresponds to its rate of sensing
the environment and executing actions. On each cy-
cle, the agent finds all concept instances (i.e., concepts
with specific objects as arguments) that match against
the perceived state of the environment. Moreover, for
each concept instance, it calculates the reward pro-
duced by that instance.

We also assume that the agent starts with the inten-
tion of executing some high-level skill or that it is given
a choice among a set of such skills. At the outset, the
system generates, for each top-level candidate, all ways
to expand the skill hierarchy, producing a set of AND

Table 2. Primitive and high-level skills for the blocks world.

(pickup (?block ?from)
:percepts ((block ?block xpos ?x)

(table ?from height ?h))
:conds ((ontable ?block ?from)

(clear ?block)
(hand-empty))

:action ((*move ?block ?x (+ ?h 10)))
:adds ((holding ?block))
:deletes ((ontable ?block ?from)

(clear ?block))
:success 0.98
:duration 1.6)

(unstack (?block ?from)
:percepts ((block ?block xpos ?x)

(block ?from height ?height))
:conds ((on ?block ?from)

(clear ?block)
(hand-empty))

:action ((*move ?block ?x (+ ?height 10)))
:adds ((clear ?from) (holding ?block))
:deletes ((on ?block ?from) (clear ?block)

(hand-empty))
:success 0.95
:duration 1.8)

(stack (?block ?to)
:percepts ((block ?block)

(block ?to xpos ?x ypos ?y height ?h))
:conds ((clear ?to) (holding ?block))
:action ((*move ?block ?x (+ ?y ?h)))
:adds ((on ?block ?to) (hand-empty))
:deletes ((clear ?to) (holding ?block))
:success 0.93
:duration 2.1)

(puton (?block ?from ?to)
:percepts ((block ?block) (table ?from)

(block ?to))
:conds ((ontable ?block ?from) (clear ?block)

(hand-empty) (clear ?to))
:skills ((pickup ?block ?from)

(stack ?block ?to)))

(puton (?block ?from ?to)
:percepts ((block ?block) (block ?from)

(block ?to))
:conds ((on ?block ?from) (clear ?block)

(hand-empty) (clear ?to))
:skills ((unstack ?block ?from)

(stack ?block ?to)))

trees with primitive skills as the terminal nodes. For
each such AND tree, it generates all possible instances
that replace variables with specific objects in the en-
vironment. The agent checks each tree instance and
retains only those that contain some path along which
the preconditions of each skill instance match against
the current environmental state. On each cycle, it re-
peats this process to produce a set of instantiated skill
trees from which to select.



For each such candidate, the agent calculates the ex-
pected average change in reward if it were executed
and selects the one with the highest score. This calcu-
lation and selection occurs on every cycle, letting the
agent shift among the top-level skill or its subskills if
new information makes an alternative look better than
the tree selected on the previous cycle. However, in
many domains this will occur rarely, if at all, and the
agent will continue to execute the expanded skill tree
selected on the first cycle until completion. Expand-
ing the skill hierarchy fully on each cycle and selecting
among entire instantiated AND trees is not the most
efficient way to make decisions, but it simplifies our
analysis considerably.

Let I be an instance of an expanded skill tree in which
SI is the instantiated top-level skill. Furthermore, let
AI be the set of literals (concept instances) achieved
by SI that are not currently satisfied and let DI be the
literals made untrue by SI that are currently satisfied.
Finally, let r(x) be the reward produced by the literal
x when it is satisfied.

We are interested in two reward-related aspects of skill
trees. One involves the cumulative change in reward
C(I) that results from I’s successful completion. We
can calculate this as

C(I) =
∑

a∈AI

r(a) −
∑

d∈DI

r(d) +
J

∑

j=1

C(j) ,

where C(j) refers to the change that results from com-
pletion of one of the J component skill trees of I. This
recursive expression terminates with primitive skills,
for which the third term is zero because they have
no components. Summing over the effects of compo-
nents makes sense because we care about the cumula-
tive change in reward.

The other quantity concerns the cumulative change in
reward B(I) that occurs during the skill’s execution.
We can compute this as

B(I) =

J−1
∑

j=1



C(j) ·

J
∑

k=j+1

d(k)



 + C(J) ,

where d(k) is the number of cycles expected to exe-
cute the component skill k successfully. This produces
a weighted sum in which the reward contributions of
earlier subskills are greater because they occur earlier
in the behavioral trajectory. The final term represents
the change produced by the final subskill, which holds
only for the last time step. Because primitive skills
have no components, their value for B is zero.

Of course, we are less interested in the expected cu-
mulative change in reward than in the average change,
for which we require predictions about the number of
cycles taken for skills to achieve their objectives. We
can define the expected duration of a high-level skill
tree instance I as

d(I) =

J
∑

j=1

d(j) ,

which is simply the sum of the durations for its com-
ponent skill trees. We assume that, if a primitive skill
fails, it leaves the environment unchanged, so the agent
can simply execute the skill again until it succeeds. If
p(I) is the probability that primitive skill instance I
will succeed on a given attempt and t(I) is the ex-
pected number of cycles per attempt, then we have

d(I) = t(I)/p(I)

as the expected cycles required for I to have its in-
tended effects. We assume that the probabilities and
execution times for primitive skills are estimated from
previous experience, as described later.

We can combine these three terms to compute the ex-
pected average change in reward A(I) for a given in-
stantiated skill tree I. A naive expression would be

A(I) = [C(I) + B(I)] /d(I) ,

which simply divides the sum of the expected change
due to completion and the change within execution by
the expected duration. However, for skills that take
more than a few cycles, this gives most of the weight
to within-execution changes, even though, in many do-
mains, the effects of a top-level skill’s execution will be
retained and valued for some time after its completion.

To model this situation, we specify f(I) as the ex-
pected number of cycles following successful comple-
tion of a top-level skill tree I that its effects will be
unchanged by other activities. This suggests

A(I) = [C(I) · f(I) + B(I)]/[d(I) + f(I)]

as a more reasonable expression, since C(I) is mul-
tiplied by the time its changes will remain in force,
giving increased weight to the long-term effects of ex-
ecuting I. Larger values for f(I) indicate a greater
willingness to amortize the results of one’s actions, and
thus will bias the agent to accept delayed rather than
immediate gratification.



The scheme described above takes advantage of known
orderings on subskills to avoid the reliance on dynamic
programming required by many model-based analyses.
However, expanding the skill hierarchy into all possi-
ble AND trees still seems undesirable for a reactive
system. A more efficient approach would store with
each skill decomposition its expected duration, proba-
bility of success, and expected change in reward during
execution. This would let the agent select among al-
ternative decompositions at the current level, without
needing to expand the subskills, but would make it less
sensitive to changes in the environment.

We should note that neither of these methods let the
agent discriminate among alternative instantiations of
an expanded skill tree, which is necessary to achieve
the full benefits of the relational formalism. For this
purpose, we need two extensions. One involves using
functions that predict the expected duration and suc-
cess probability of a skill instance from the attribute
values of objects that serve as its arguments. For ex-
ample, lifting a heavier block may take longer than a
lighter one and be more likely to fail.

The other extension involves adding the ability to draw
inferences from the effects of skills and the current
state, since these may imply satisfaction or retraction
of concepts not mentioned in the skills themselves. For
example, executing subskills that produce (on A B)
and (on B C) implies (three-tower A B C), which is
a source of reward, whereas executing subskills that
produce (on A B) and (on C D) does not. We can
mimic this ability by storing such effects with higher-
level skills, but this requires more hand crafting than
seems desirable.

3.4. Learning Assumptions

Our framework posits that the agent already has con-
cepts and skills in long-term memory, including the
order in which subskills should be invoked for each de-
composition. However, although it has initial guesses
about the expected duration and success probability of
its primitive skills, we assume it can use experience to
improve them. One simple approach initializes these
parameters to the same values for each skill using a
Dirichlet distribution. In practice, this involves stor-
ing the number of times each skill has been executed
and one sum for each parameter.

In this scheme, learning simply involves incrementing
the counter whenever the agent executes a skill and
increasing the success and duration counts upon its
completion. The agent then uses these running to-
tals to calculate the success probability and expected

duration on each cycle, which makes learning entirely
incremental. For the variant in which high-level skills
have similar statistics, the agent must retain multiple
totals for each expansion and take the maximum.

4. Discussion

Our framework incorporates ideas from three distinct
literatures in the reinforcement learning community,
each involving extensions to the basic value-function
framework. The first concerns the use of hierarchical
structures to provide temporal abstraction and to de-
compose both performance and learning into simpler
tasks. Icarus has similarities to Parr and Russell’s
(1998) hierarchies of abstract machines, but we have
been influenced more directly by Dietterich’s (2000)
MAXQ framework, which also makes choices among
nodes in an AND/OR tree. Our focus on average re-
ward in a hierarchical setting follows the work of Seri
and Tadepalli (2002). These earlier analyses all rely on
the theory of semi-Markov decision processes, which
we have replaced with stronger assumptions about the
effects of actions closer to those made in classical arti-
ficial intelligence research.

We have also borrowed ideas from work on model-
based reinforcement learning, which utilizes a mapping
from states and actions onto states rather than values.
Most efforts along these lines (e.g., Barto et al., 1995)
suppose the agent must learn this mapping, whereas
we assume it begins with knowledge about the effects
of actions and must learn only durations and success
probabilities. Our representation for action models is
similar to that described by Pasula et al. (in press),
who utilize a probabilistic variant of Strips opera-
tors. However, our embedding of model-based meth-
ods within a hierarchical formalism comes closer to
Seri and Tadepalli’s framework.

Finally, we have been influenced strongly by research
on relational reinforcement learning, which incorpo-
rates relational representations to support more pow-
erful abstractions than traditional methods. Within
this paradigm, some work has adapted model-free
learning techniques (e.g., Dzeroski, de Raedt, &
Driessens, 2001), whereas other efforts have pursued
model-based approaches (e.g., van Otterlo, in press).
Our framework makes only marginal contact with
these earlier efforts, since it calculates expected re-
ward for instantiations of general skills, which it relies
on pattern matching to generate. Each such instan-
tiation is treated as an alternative course of action
available to the agent, which the agent evaluates using
its knowledge about the effects of component skills.



Although we have implemented the key representa-
tional ideas described above in Icarus/4, we have
not yet incorporated the model-based selection of skill
trees or the methods for learning durations and suc-
cess probabilities. We predict that this approach will
support more effective initial behavior and more rapid
learning than the model-free scheme of Icarus/3, but
this is an empirical question that can best be answered
with experiments. To this end, we plan to evaluate the
two variants in a simulated in-city driving environment
that we have already used in other studies.

Our model-based techniques rely centrally on both ac-
curate predictions of primitive skills’ effects and on
a well-structured skill hierarchy. Although the cur-
rent framework assumes these are provided at the out-
set, we have definite ideas about how they might be
learned from experience. Benson (1995) describes one
method for learning action models that correspond to
primitive durative skills, and Pasula et al. report an-
other that produces probabilistic descriptions similar
to those in our analysis. Reddy and Tadepalli (1997)
present an approach to inducing decomposition rules
from problem-solving traces, and we have developed a
related method that learns Icarus skill hierarchies in
a cumulative manner (Langley & Rogers, 2004).

However, like any induction mechanism, such tech-
niques can make errors, which would lead to skills
with conditions and effects that are only partially cor-
rect. In such cases, it seems advisable to retain some
form of model-free reinforcement learning to account
for reward not predicted by the agent’s skills. In this
framework, the system would divide the reward stream
into two components, one claimed by predicted effects
and another handled by the model-free method from
Icarus/3. This combined scheme would let each skill
maintain two estimates of future reward, one easy to
attribute but dependent on accurate models and an-
other to account for the remainder. We hypothesize
that such a hybrid architecture would still support
rapid learning but give higher asymptotic behavior.
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