
Interleaving Learning, Problem Solving, and

Execution in the Icarus Architecture

Pat Langley (langley@csli.stanford.edu)

Dongkyu Choi (dongkyuc@stanford.edu)

Seth Rogers (srogers@csli.stanford.edu)

Computational Learning Laboratory

Center for the Study of Language and Information

Stanford University, Stanford, CA 94305 USA

Abstract

In this paper, we review Icarus, a cognitive architecture that utilizes hierarchical skills and con-

cepts for reactive execution in physical environments. In addition, we present two extensions to

the framework. The first involves the incorporation of means-ends analysis, which lets the system

compose known skills to solve novel problems. The second involves the storage of new skills that

are based on successful means-ends traces. We report experimental studies of these mechanisms

on three distinct domains. Our results suggest that the two methods interact to acquire useful

skill hierarchies that generalize well and that reduce the effort required to handle new tasks. We

conclude with a discussion of related work on learning and prospects for additional research.

Key words: incremental learning, cognitive architecture, reactive control, problem solving,

hierarchical skills

1. Introduction and Motivation

Research on cognitive architectures (Newell, 1990) attempts to understand the computational in-

frastructures that support intelligent behavior. A specific architecture characterizes the aspects of

a cognitive agent that remain the same across time and over different domains, and typically makes

strong commitments about the representation of knowledge structures and the processes that op-

erate on them. Learning has been a central concern in most architectural research, with a variety

of mechanisms having been proposed to model the acquisition of knowledge from experience. The

learning methods embedded in most cognitive architectures are incremental, reflecting evidence

that humans acquire knowledge in this manner, but there have been few accounts of the origin of

hierarchical structures that appear crucial to complex cognition.

In this paper we review Icarus, a candidate architecture that diverges from its predecessors

on a number of dimensions. One important difference is that typical architectures handle concep-

tual knowledge in a procedural manner, typically using production rules, whereas our framework

contains separate memories for concepts and skills. Another distinctive feature is that most ar-

chitectures are based on production systems, which encode knowledge as a ‘flat’ set of condition-

action rules, whereas Icarus makes an architectural commitment to the hierarchical organization of

knowledge. One can certainly encode hierarchical structures in frameworks like ACT-R (Anderson,

1993) and Soar (Laird, Rosenbloom, & Newell, 1986), but this remains the modeler’s choice rather

than a strong theoretical claim. In addition, most cognitive architectures evolved from theories of

human problem solving, which has led to subordinate roles for perception and action even in those

frameworks that support them.1 In contrast, Icarus is primarily an execution architecture that

perceives and reacts to external environments, which we view as more basic than problem solving.

However, Icarus’ reliance on hierarchical structures raises key questions about their origin.

Moreover, the architecture’s emphasis on execution does not mean that mental activities like prob-

lem solving are unimportant, since they can let an agent handle novel tasks for which stored

knowledge is unavailable. The central hypothesis of this paper is that hierarchical skills arise, at

least in many cases, from problem-solving behavior, and that, once learned, the agent can use these

structures to support reactive execution in the environment. Moreover, this acquisition occurs in an

incremental manner, with new skills being learned gradually as the agent encounters new problems

it cannot handle without resorting to problem solving.

We refer to Icarus as a ‘cognitive architecture’ in the same sense that the Soar community

uses that expression. Both frameworks aim for consistency with general knowledge about human

cognition and hope to support the same broad range of abilities that people demonstrate. However,

our current research does not attempt to match at a fine-grained level the results of psychological

experiments, as done with architectures like ACT-R. We may address such issues in future research,

but for now we are concerned with coarse regularities that demand explanation, such as the apparent

hierarchical nature of human skills and their incremental acquisition from experience.

In the sections that follow, we review Icarus’ representation and organization of concepts and

skills, along with the inference and execution processes that utilize them. After this, we present

1. Recent extensions to Soar and ACT-R have provided them with sensori-motor interfaces, but their emphasis on

central cognition remains strong.

Page 2 Learning Hierarchical Skills

a new module that interleaves means-ends problem solving with execution when known skills are

insufficient to solve a task. Next we describe a mechanism for creating generalized skills from traces

of successful problem solving that supports incremental, hierarchical learning. We report experi-

ments with this learning mechanism that demonstrate its ability to generalize to novel situations

and reduce effort on new problems. In closing, we discuss earlier research on learning for problem

solving and execution, along with some directions for future work.

2. Representation and Organization

Like other cognitive architectures, Icarus makes commitments to its representation of knowledge,

the manner in which that knowledge is organized, and the memories in which it resides. Following

most theories of human cognition, the framework distinguishes between long-term memories, which

change only gradually due to learning, and short-term memories, which change rapidly as the

agent revises its beliefs and goals. In this section, we discuss Icarus’ memories and the formalisms

used to encode their contents.2 We will take our examples from the Blocks World, since many

readers should find this domain familiar. We have described these aspects of the framework in

more detail elsewhere, including their use in other domains like in-city driving (Choi et al., 2004)

and multi-column subtraction (Langley, Cummings, & Shapiro, 2004).

2.1 Long-Term Conceptual Memory

One of Icarus’ long-term memories stores concepts that describe generalized situations in the

environment. These may involve isolated objects, such as individual blocks, but they can also

characterize physical relations among objects, such as the relative positions of blocks. Long-term

conceptual memory contains the definitions of these logical categories. Each element specifies the

concept’s name and arguments, along with fields which describe perceptual entities that must

be present, lower-level concepts that must match, lower-level concepts that must not match, and

numeric relations that must be satisfied. Table 1 presents some concepts from the Blocks World.

For example, the relation on describes a perceived situation in which two blocks have the same x

position and the bottom of one has the same y position as the top of the other. The concept clear

instead refers to a single block, but one that cannot hold the relation on to any other.

Definitions of this sort organize Icarus categories into a conceptual hierarchy. Primitive con-

cepts are defined entirely in terms of perceptual conditions and numeric tests, but many incorporate

other concepts in their definitions. This imposes a lattice structure on the memory, with more basic

concepts at the bottom and more complex concepts at higher levels. The resulting hierarchy is sim-

ilar in spirit to discrimination network models of human memory like Epam (Richman, Staszewski,

& Simon, 1995), as well as to frameworks like description logics (Nardi & Brachman, 2002). Struc-

turally, this lattice bears a close resemblance to the Rete networks (Forgy, 1982) used for matching

in production-system architectures.

2. Previous versions of Icarus, reported by Langley et al. (1991) and by Shapiro et al. (2001), have made substan-

tially different assumptions. To distinguish the current architecture from its predecessors, Icarus/3 would be a

more proper reference.

Learning Hierarchical Skills Page 3

Table 1. Some Icarus concepts for the Blocks World, with variables indicated by question marks. Percepts refer
only to attribute values used elsewhere in the concept definition.

(on (?block1 ?block2)

:percepts ((block ?block1 xpos ?xpos1 ypos ?ypos1)

(block ?block2 xpos ?xpos2 ypos ?ypos2 height ?height2))

:tests ((equal ?xpos1 ?xpos2)

(>= ?ypos1 ?ypos2)

(<= ?ypos1 (+ ?ypos2 ?height2)))

(clear (?block)

:percepts ((block ?block))

:negatives ((on ?other ?block))

(unstackable (?block ?from)

:percepts ((block ?block) (block ?from))

:positives ((on ?block ?from) (clear ?block) (hand-empty)))

(pickupable (?block ?from)

:percepts ((block ?block) (table ?from))

:positives ((ontable ?block ?from) (clear ?block) (hand-empty)))

2.2 Long-Term Skill Memory

Icarus also incorporates a second long-term memory that stores knowledge about skills it can

execute in the environment, including their conditions for application and their expected effects.

Each skill clause includes a head (a name and zero or more arguments) and a body that specifies the

concepts that must hold to initiate the skill and one or more components. A primitive skill clause

indicates one or more ordered, executable actions, along with those concepts that, taken together,

describe the situation the skill produces when done. A primitive skill may also state conditions that

must hold throughout its execution, which may require multiple cycles to complete. For example,

Table 2 shows the skill pickup, which must satisfy the start condition, (pickupable ?block ?from),

defined in Table 1, and invokes *grasp, which grasps a block, and *vertical-move, which moves the

hand in the vertical direction. The skill’s only stated effect is to make (holding ?block) true.

In contrast, a nonprimitive skill clause specifies how to decompose that activity further. For

instance, Table 3 includes two clauses for the nonprimitive skill clear. Each indicates that execut-

ing the clause will achieve that goal, but they differ in their start conditions and in their subskills.

Nonprimitive skill clauses do not specify either required conditions or effects, but their heads always

corresponds to a concept that the skill will achieve upon successful completion. This representa-

tional assumption figures centrally in the learning mechanism we describe later. Because Icarus

concepts and skills utilize a syntax similar to that found in the programming language Prolog, we

have referred elsewhere to sets of these long-term memory structures as teleoreactive logic programs

(Choi & Langley, 2005). This phrase conveys both their structural similarity to traditional logic

programs and their ability to behave reactively in a goal-driven manner, following Nilsson’s (1994)

notion of a teleoreactive system.

Page 4 Learning Hierarchical Skills

Table 2. Primitive skills for the Blocks World. Each clause has a head that specifies the skill’s name and arguments,
a set of typed percepts, a single start condition, a set of effects, and a set of executable actions (marked by asterisks).

(unstack (?block ?from)

:percepts ((block ?block) (block ?from))

:start ((unstackable ?block ?from))

:effects ((clear ?from) (holding ?block))

:actions ((*grasp ?block) (*vertical-move ?block)))

(pickup (?block ?from)

:percepts ((block ?block) (table ?from))

:start ((pickupable ?block ?from))

:effects ((holding ?block))

:actions ((*grasp ?block) (*vertical-move ?block)))

(stack (?block ?to)

:percepts ((block ?block) (block ?to))

:start ((stackable ?block ?to))

:effects ((on ?block ?to) (hand-empty))

:actions ((*horizontal-move ?block ?xpos)

(*vertical-move ?block)

(*ungrasp ?block)))

(putdown (?block ?to)

:percepts ((block ?block) (table ?to))

:start ((putdownable ?block ?to))

:effects ((ontable ?block ?to) (hand-empty))

:actions ((*horizontal-move ?block)

(*vertical-move ?block)

(*ungrasp ?block)))

2.3 Short-Term Memories

In addition to long-term memories, which encode relatively stable knowledge about a domain,

Icarus follows standard psychological theory by incorporating short-term stores that change more

rapidly. These contain the agent’s temporary perceptions and beliefs about the environment, as

well as its goals and intended activities. They include:

• a perceptual buffer that holds descriptions of physical entities which correspond to the output

of sensors; for the blocks world, this includes literals like (block B xpos 10 ypos 2 width 2

height 2), which specify the position and size of individual blocks.

• a short-term conceptual memory that contains beliefs about the environment which the agent

infers from items present in its perceptual buffer and long-term concept memory; for instance,

this might contain the instance (on B C), which is an instance of the on concept in Table 1.

• a short-term skill memory that contains the agent’s goals and associated skill instances it

intends to execute; each goal literal specifies a concept’s name and argumets, as in (clear A),

whereas each associated intention gives a skill’s name and its arguments, as in (stack B C),

which is an instance of the skill stack in Table 2.

Learning Hierarchical Skills Page 5

Table 3. Some nonprimitive skills for the Blocks World that involve recursion. Each skill clause has a head that
specifies the goal it achieves, a set of typed percepts, one or more start conditions, and a set of ordered subskills.
Numbers after the head distinguish different clauses that achieve the same goal.

(clear (?B) 1 (unstackable (?B ?A) 3

:percepts ((block ?C) (block ?B)) :percepts ((block ?A) (block ?B))

:start ((unstackable ?C ?B)) :start ((on ?B ?A) (hand-empty))

:skills ((unstack ?C ?B))) :skills ((clear ?B) (hand-empty)))

(hand-empty () 2 (clear (?A) 4

:percepts ((block ?C) (table ?T)) :percepts ((block ?B) (block ?A))

:start ((putdownable ?C ?T)) :start ((on ?B ?A) (hand-empty))

:skills ((putdown ?C ?T))) :skills ((unstackable ?B ?A)

(unstack ?B ?A)))

Unlike most cognitive architectures, every element in the short-term conceptual and skill memories

must be an instance of some generalized structure in the long-term conceptual and skill mem-

ory, respectively; they cannot be arbitrary symbolic structures. We have discussed this strong

correspondence assumption at more length elsewhere (Langley & Rogers, 2005).

3. Conceptual Inference and Skill Execution

Like most cognitive architectures, Icarus operates in distinct cycles. On each such iteration, the

system updates its perceptual buffer by sensing objects in its field of view, with the specific sensors

depending on the particular environment in which the agent is operating. This process produces

perceptual elements, which are are deposited in the perceptual buffer and which initiate matching

against long-term concepts. The matcher checks to see which primitive concepts (i.e., those defined

entirely in terms of percepts) are satisfied, adds each matched instance to conceptual short-term

memory, and repeats the process on nonprimitive concepts to infer higher-level beliefs.

In this way, Icarus infers all instances of concepts that are implied by its conceptual definitions

and the contents of the perceptual buffer. For example, a Blocks World agent would first update

its descriptions of the blocks and the table, then infer primitive concepts like on, and finally infer

complex concepts like unstackable. This bottom-up procedure operates in much the same way

as the Rete networks (Forgy, 1982) used in many production-system architectures and the logical

inference methods used in many truth-maintenance systems (e.g., Doyle, 1979). The default process

is exhaustive, but elsewhere we have reported an alternative mechanism that makes inferences more

selectively (Asgharbeygi et al., 2005).

On each cycle, the architecture also examines the agent’s goals and their associated intentions

in short-term skill memory to determine which, if any, apply to the current situation.3 For each

intended skill instance, Icarus accesses all clauses of the general skill to see if they are applicable.

3. Icarus’ first step in a run typically involves selecting a relevant and applicable instance of a nonprimitive skill

that it believes will achieve one of its goals.

Page 6 Learning Hierarchical Skills

Since variables can be bound within a skill’s body, this set may include multiple variants of each skill

clause stored in long-term memory. A primitive skill clause is applicable if, for its current variable

bindings, its effects do not yet hold, its requirements are satisfied, and, if the system has not yet

started executing it, the start conditions match the current situation. A higher-level skill clause is

applicable if its head is not satisfied, the start conditions are satisfied if it has not been initiated,

and at least one subskill is applicable. Because this latter test is recursive, a skill is applicable

only when Icarus can find at least one acceptable path downward to executable actions, which

the architecture returns for invocation.

For example, suppose an Icarus agent has the goal (clear A) in a situation where block A is on

the table, block B is on A, block C is on B, and the hand is empty. Suppose further that the agent

has access to the primitive skills in Table 2 and the nonprimitive ones in Table 3. In this case, the

system would find an applicable path through the skill hierarchy that is relevant to its goal: [(clear

A), (unstackable B A), (clear B), (unstackable C B), (clear C), (unstack C B)]. This holds because

the instantiated start conditions of each skill along the path (e.g., (on B A) and (hand-empty) for

the topmost skill) are present in conceptual short-term memory. If selected, (unstack C B) would

alter the environment, making the path [(clear A), (unstackable B A), (clear B), (unstackable C

B), (hand-empty), (putdown C T)] acceptable on the next cycle. This would produce a belief state

that enables the next step in the procedure, which would continue until the agent had satisfied its

top-level goal, (clear A).

During skill selection, Icarus incorporates two preferences that provide a balance between reac-

tivity and persistence. When confronted with a choice between two or more subskills, it selects the

first alternative for which the head is not satisfied. This supports reactive control, since the system

reconsiders previously completed subskills and, if their effects no longer hold for some reason, reex-

ecutes them to remedy the problem. On the other hand, when encountering two or more applicable

skill paths, Icarus selects the one that shares the most elements from the start of the path executed

on the previous cycle. This encourages the system to continuing executing a high-level skill it has

already started until that skill achieves its associated goal or until it becomes inapplicable.

4. Means-Ends Problem Solving

As just explained, Icarus can execute complex hierarchical skills in a reactive manner, but our

initial studies (e.g., Choi et al., 2004; Langley et al., 2004) assumed that these skills are already

present in long-term memory. Although much human behavior appears to involve the application

of such routine skills, people can also solve novel tasks that require the dynamic combination of

existing knowledge elements through some form of heuristic problem solving.

To model this capability in Icarus, we have introduced a variant of means-ends analysis (Newell,

Shaw, & Simon, 1960) that operates over the architecture’s knowledge structures, including both

long-term concepts and skills provided by the programmer and short-term beliefs and goals pro-

duced by the architecture. Traditional means-ends problem solving selects some unsatisfied aspect

of the goal state to achieve, then selects an operator that would achieve it. If that operator’s

preconditions match the current state, it is applied; otherwise, the method selects an unsatisfied

Learning Hierarchical Skills Page 7

precondition to achieve, selects an operator that would achieve it, and so on. Once a condition

is met, the process is repeated until the original goal description is satisfied. This may require

search, which is often pursued in a depth-first manner. Means-ends analysis has been implicated

repeatedly in human problem solving on novel tasks.

To support this mechanism, our extended version of Icarus augments the short-term skill mem-

ory with a goal stack. Each element in this stack specifies a goal (a desired concept instance),

whether the agent intends to achieve it by backward chaining off a concept definition or a skill

clause, and, in the latter case, the skill instance that, if executed, should achieve it. Each goal

element also specifies subgoals that have already been achieved, along with skill and/or concept

instances that it has tried in reaching this goal but that have failed. The first are needed to keep

the system from considering skills that would undo its previous accomplishments, whereas the sec-

ond ensures it does not repeat earlier mistakes. We also assume that both the start conditions of

primitive skills and top-level goals must be cast as single relational literals, which causes no loss in

generality, since either may be defined concepts.

We have also extended the Icarus interpreter to take advantage of these new memory structures.

On each cycle, the system takes one of five distinct, ordered steps:

1. If the current goal G of the goal stack GS is satisfied, then pop G from GS and store information

about the success with G’s parent.

2. If the goal stack GS does not exceed the depth limit and there are applicable skill paths that

start from a skill instance with the current goal G as its head, then select one such path and

execute it.

3. If there is a nonempty set of primitive skill instances in which the current goal G is an effect that

have not already failed, then select a skill instance from this set and push its start condition

(which we assume subsumes any required conditions) onto the goal stack GS.

4. If the current goal G is an instance of a complex concept with unsatisfied subconcepts H and

with satisfied subconcepts F, then if there is a subconcept I in H that has not yet failed, push

I onto the goal stack GS.

5. Otherwise pop the current goal G from the goal stack GS and store information about the

failure with G’s parent.

We assume that each of these activities takes a single cycle of the architecture, with the initial

situation being a special case of the third item that triggers the process. Because reasoning about

how to achieve an objective can require many manipulations of the goal stack, it takes more cycles

than executing a stored hierarchical skill for that goal, even when the agent finds a solution on its

first attempt and does not have to backtrack.

Figure 1 shows a successful trace of the problem solver’s behavior on a simple Blocks World task

in which when the goal is (clear A) and when block A is on the table, block B is on A, block C is

on B, and the hand is empty. In this situation, the system looks for executable skills with this goal

as its head but, when this fails, it considers skills that have the goal as one of its effects. In this

case, invoking the primitive skill instance (unstack B A) would produce the intended result, but it

Page 8 Learning Hierarchical Skills

Figure 1. A trace of successful problem solving in the Blocks World, which ellipses indicating goals and rectangles
denoting primitive skills.

cannot be applied because its instantiated start condition, (unstackable B A), does not hold. In

response, the problem solver stores the skill instance with the initial goal and pushes the subgoal

onto the goal stack.

Next, the problem solver attempts to retrieve skills that would achieve (unstackable B A). How-

ever, because it has no such skills in memory, it resorts to chaining off the definition of unstackable.

This involves three instantiated subconcepts – (clear), (on B A), and (hand-empty) – but only the

first of these is unsatisfied, so the system pushes it onto the goal stack. This in turn leads it to

consider skills that would produce this literal as an effect and retrieves the skill instance (unstack

C B), which it stores with the current goal. In this case, the start condition of the selected skill,

(unstackable C B) already holds, so the system executes (unstack C B). The associated actions

alter the environment and cause the agent to infer (clear B) from its percepts. In response, it pops

this goal from the stack and reconsiders its parent, (unstackable B A). However, this has not yet

been achieved because executing the skill has caused the third of its component concept instances,

(hand-empty), to become false. Thus, the system pushes this onto the stack and, upon inspecting

memory, retrieves the skill instance (putdown C T), which it can and does execute.

This second step achieves the subgoal (hand-empty), which in turn lets the agent infer (unstack-

able B A). Thus, the problem solver pops this element from the goal stack and executes the skill

instance it had originally selected, (unstack B A), in the new situation. Upon completion, the

system perceives that the altered environment satisfies the top-level goal, (clear A), which leads it

to halt, since it has solved the problem.

Learning Hierarchical Skills Page 9

For the sake of clarity, both our description and Figure 1 present the trace of successful problem

solving, but finding such a solution may involve search. When backward chaining off skills that

would achieve the objective of the current stack entry, Icarus considers only skill instances that

have not yet failed. The system also prefers candidates that have the fewest expanded start condi-

tions that are unmet by the current environmental state, with fully matched conditions being most

desirable. If candidates tie on this criterion, it selects an alternative at random. When backward

chaining off the unmatched elements of a concept definition, the system selects subgoals at random

after eliminating those which have failed in the past.

Taken together, these biases produce a heuristic version of means-ends analysis. However, this

problem-solving method is tightly integrated with the execution process. Icarus backward chains

off concept or skill definitions when necessary, but it executes the skill associated with the top

stack entry as soon as it becomes applicable. Moreover, because the architecture can chain over

hierarchical reactive skills, their execution may continue for many cycles before problem solving is

resumed. In contrast, most models of human problem solving and most AI planning systems focus

on the generation or the execution of plans, rather than interleaving the two processes.

Of course, executing a component skill before constructing a complete plan can lead an agent

into difficulties, since one cannot always backtrack in the physical world. This strategy may well

lead to suboptimal behaviors, but human intelligence is more about satisficing than optimizing,

and interleaving problem solving with execution requires far less memory than constructing a full

plan before executing it. However, it can produce situations from which the agent cannot recover

without starting the problem over.

In such cases, Icarus stores the goal element for which its executed skill caused a problem,

along with everything below it in the stack. The system begins the problem again, this time

avoiding the skill and selecting another option. If it makes a different execution error this time, it

again stores the problematic skill and its context, then starts over once more. Icarus also starts

over if it has not achieved the top-level objective within a specified number cycles. Such repeated

attempts at solving a task, with selected memory about previous passes, seems a better model of

human problem solving than systems that construct a complete plan before execution. Jones and

Langley’s (in press) model of means-ends problem solving, Eureka, used a similar restart strategy,

but it kept no explicit record of previous failed paths.

5. Learning Hierarchical Skills from Problem Solving

In the previous pages, we described two facets of Icarus: its execution of hierarchical skills on

familiar tasks and its use of problem solving to handle novel ones. The first lets the system

operate efficiently, but skills are tedious to construct manually, whereas the second gives the system

flexibility but requires reasoning and means-ends search. We believe that humans also have both

capabilities, but that they use learning to transform the results of successful problem solving into

hierarchical skills. We would like to incorporate a similar capability into Icarus.

However, we want our learning mechanisms to reflect certain properties that appear to hold for

human skill acquisition. One is that learning should take advantage of existing knowledge, such as

Page 10 Learning Hierarchical Skills

the definitions of current skills and concepts. In addition, acquisition should be incremental, in that

it learns from each new experience, and interleaved with the problem-solving process. The recent

literature on computational learning contains few cases of such knowledge acquisition, although in

Section 7 we discuss some older work that has this character.

Our extension of Icarus achieves this effect through a form of impasse-driven learning that is tied

closely to its problem-solving and execution processes. For this reason, the learning mechanisms

require no additional inputs beyond those required for these basic performance processes. As in

Soar (Laird et al., 1986), the purpose of skill learning is to avoid such impasses in the future.

Thus, whenever the architecture achieves an objective that is associated with an entry in the goal

stack, this success provides an opportunity for learning. The system acquires two distinct forms of

skill that are tied to different aspects of problem solving.

The first class of skills result from situations in which the problem solver cannot find a skill to

achieve a goal G, and thus pursues subgoals based on the unsatisfied conditions of G’s conceptual

definition. If the agent achieves these subgoals in the order {G1, G2, . . . , Gn}, thus satisfying

the parent goal G, Icarus constructs a new skill clause that has G as its head and that has

{G1, G2, . . . , Gn} as its ordered subskills.4 The start conditions of the new clause are simply

those subconcepts of G that were satisfied when it was pushed onto the goal stack. The head,

conditions, and subskills have their arguments replaced by variables in a consistent manner, ensuring

applicability to analogous situations that involve different objects.

For example, upon achieving the subgoal (unstackable B A) in Figure 1, the system constructs

the unstackable skill clause labeled 3 in Table 3. The head (unstackable ?B ?A) is a generalized

version of the goal (unstackable B A), whereas the ordered subskills (clear ?B) and (hand-empty)

are generalized versions of its two subgoals (clear B) and (hand-empty). The start conditions are

(on ?B ?A) and (hand-empty), which are generalized versions of the subconcepts that held when

the goal was established. Finally, the :percepts field specifies the types for objects that serve as

the head’s arguments. This mechanism constructs different variants of a skill, with separate start

conditions and distinct subskills, from subproblems that involve different initial conditions.

The second category results from situations in which Icarus has selected a primitive skill instance

S2 in order to achieve a goal G, but found its single start condition G2 unsatisfied and selected

another skill instance, S1, to achieve it. Once the agent has executed both skills successfully and it

has reached the goal, the system constructs a new skill clause that has G as its head and that has

G2 (rather than the specific clause S1) and S2 as ordered subskills. The start conditions are simply

the start conditions of the S1 clause used in the subproblem solution, which are sufficient because

the problem solver S1 selected it to achieves the start condition of S2, which in turn achieves the

goal G. Again, specific arguments are replaced consistently by variables.

For instance, upon achieving the top-level goal (clear A) in Figure 1, Icarus creates the clear

skill clause labeled 4 in Table 3. This incorporates a generalized version of (clear A) as its head,

along with variableized versions of (unstackable B A) and (unstack B A) as its two ordered subskills.

The start conditions, (on ?B ?A) and (hand-empty), are the same as those for unstackable clause

4. Note that the system refers to subskills by the goals they achieve, rather than to specific clauses, which lets the

parent skill take advantage of other clauses for these goals that are learned later.

Learning Hierarchical Skills Page 11

3 just discussed, since the latter was created to achieve the start condition of unstack under those

same conditions, which in turn satisfies the goal clear.

Both learning mechanisms are fully incremental, in that each learning event draws on a single

problem-solving experience and thus requires no memory of previous ones. They support within-

trial learning, since skills acquired on one subproblem may be used to handle later subproblems.

The processes also build on existing knowledge, since the construction of new skill clauses involves

the composition of those used in a training problem’s solution. Taken together, these support a

form of cumulative learning, in which Icarus learns skills on one problem, uses them to solve a

later problem, and incorporates them into still higher-level structures.

As suggested by our examples, these learning methods can acquire both disjunctive and recursive

skills. The key to this ability lies in the assumption that acquired skill clauses which achieve the

same goal should be given the same head. By indexing skills in this manner, Icarus knows when

two or more clauses should be stored together, which leads in turn to the creation of skills that call

on themselves, either directly or through intermediate skills. This makes the architecture’s learned

skills considerably more flexible and general than traditional ‘macro-operators’ (e.g., Iba, 1988) or

composed production rules (e.g., Neves & Anderson, 1981).

Of course, the creation of disjunctive and recursive structures has potential for overgeneralization,

as demonstrated by research on the induction of context-free grammars (e.g., Langley & Stromsten,

2000). Our technique for determining the start conditions on new skill clauses is much simpler

than standard techniques for analytical learning or rule induction. In fact, at first glance, the

learned clauses in Table 3 appear highly overgeneral, but this ignores the fact that Icarus does

not interpret skills in isolation. Recall that the architecture must find an entire path through the

skill hierarchy before it can execute the primitive skill at its terminus. This means the system

collects conditions dynamically, as it descends the hierarchy, guarding against overgeneralization

by carrying out limited analysis at performance time rather than doing it all at learning time.

Unlike some approaches to incremental learning, Icarus’ methods require no additional mecha-

nisms for skill refinement. Each skill clause is generalized when the architecture constructs it, and

its start conditions are assumed to be accurate. The knowledge it acquires from solving a given

problem may well be incomplete, but this will simply lead to further impasses that produce addi-

tional learning. Skill clauses acquired later complement, but do not compete with, those learned

earlier because they cover different situations or the older clauses would have avoided the impasse.

Thus, learning is purely monotonic, as in frameworks like Soar.

We should note that our current implementation restricts the use of learned skills in future

problem solving. In particular, we have adopted Mooney’s (1989) idea that one should not chain

off the preconditions of learned skills. This does not restrict their use by the execution module, but

it does mean that the problem solver considers a learned skill only when its start conditions are

already satisfied. As a result, clauses acquired from chaining off skills always have a left-branching

structure in which the second subskill is primitive. This assumption may seem restrictive, but, like

Mooney, we believe it provides an effective guard against the utility problem (Minton, 1990), in

which the creation and use of complex structures reduces search but actually slows performance.

Page 12 Learning Hierarchical Skills

6. Experimental Studies of Skill Learning

Although the new methods for learning hierarchical skills seem plausible, whether they improve

an Icarus agent’s performance is an empirical question. In this section, we report the results

of basic tests of these mechanisms on three distinct domains: in-city driving, the Blocks World,

and FreeCell solitaire. After this, we report more systematic experiments with the domains that

examine the effects of learning in more detail. As one measure of performance, we used the number

of recognize-act cycles required to solve the problem in the simulated environment, including both

problem solving and execution steps. However, we also measured the CPU time required to solve

each problem, to determine whether Icarus suffers from the utility problem.

6.1 Domains and Basic Demonstrations

To ensure that our approach to learning hierarchical skills operated as intended, we developed

Icarus programs for the three domains. In each case, we provided a set of primitive skills sufficient

for solving problems with means-ends analysis and a set of hierarchical concepts sufficient for

recognizing situations that were relevant to executing those skills. For example, we devised some

41 concepts and 19 skills for the in-city driving domain, 11 concepts and four skills for the Blocks

World, and 24 concepts and 12 skills for FreeCell solitaire. The Appendix gives the names of the

primitive concepts, nonprimitive concepts, and primitive skills provided for each domain, which

should also suggest their function. In addition, we also provided the architecture with a set of

sensors and effectors for each simulated environment.

We have already discussed the Blocks World, but both in-city driving and FreeCell merit some

explanation. The first domain involves a dynamic simulation of a downtown driving environment.

The city contains objects represented as rectangles of different sizes, including buildings and side-

walks organized into square blocks that are divided by street segments and intersections. Each

segment includes a yellow center line and white dotted lane lines, and it has a marked street name

and speed limit. Each buildings has a unique street address to help the agent navigate through the

city and to support tasks like package delivery. The city configuration used in our experiments has

nine blocks with four vertical streets and four horizontal streets. The Icarus agent must operate

under physical laws and follow the rules of driving, such as staying on the right side of the street

and turning from the proper lane. We provide the agent specific with goals to achieve, such as

getting onto another street segment or delivering a package to a certain address.

FreeCell solitaire involves eight stacks of cards, the first four of which contain seven cards and

the last four contain six cards. All 52 cards are dealt face up, making them visible to the player.

In addition, there are four free cells, which can serve as temporary holding spots for one card each

during the game, and one foundation cell for each suit. The goal in FreeCell is to get all cards on

the foundation cells in ascending order (where the ace is one and the king is thirteen) grouped by

suit. Once on its foundation cell, a card cannot be removed. Only fully-exposed cards at the top

of each stack and cards that in the free cells are in play. The agent can move one card at a time to

an available free cell, to the appropriate foundation cell, to an empty stack, or to a stack in which

the top card has a different color and value one higher than the moved card.

Learning Hierarchical Skills Page 13

Sample runs with the in-city driving domain, the Blocks World, and a reduced version of FreeCell

indicated that the extended version of Icarus was able to solve problems in their respective domains

with some search and, from their respective traces, learn hierarchical skills in the manner described

earlier. We found that, when given the same task to solve a second time, the system utilized

this knowledge to handle it without problem solving. Moreover, because the system generalizes

its learned structures beyond the specific instances on which they are based, they transfer fully

to any tasks that are isomorphic to those it has already solved. The only constraint is that this

isomorphism must involve the same goal and have the same concepts satisfied or unsatisfied in the

initial environment.

However, we should note this ability does not mean that the system can complete a familiar

problem in a single cycle. Recall that, traditional work on cognitive architectures, Icarus resorts

to problem solving only to enable action, and it must still execute its acquired skills to achieve

a goal. Thus, for a problem that requires four primitive steps, the system takes six cycles on

the second encounter, with one to retrieve the hierarchical skill and one to realize it has finished.

However, the agent requires neither search or backward chaining over skills or concepts to complete

any problem it has solved previously.

6.2 Experiment with In-City Driving

Although these initial runs were encouraging, we desired more than anecdotal demonstrations that

the new mechanisms supported incremental learning of hierarchical skills. We also wanted evidence

from systematic experiments that this learned knowledge produces more effective behavior. Our

first study along these lines focused on in-city driving, which is the most dynamic of the three

settings and thus the one most appropriate for evaluating our methods for learning skills that

support reactive execution.

As noted above, we provided Icarus with 41 concepts and 19 primitive skills relevant to this

environment. With the basic knowledge, the agent can characterize its situation at multiple levels of

abstraction and perform actions for accelerating, decelerating, and steering left or right at realistic

angles. Thus, it can operate a vehicle, but this is not sufficient to drive safely in a city environment.

The agent must still learn skills for staying aligned and centered within lane lines, change lanes,

increase or decrease speed for turns, and stop for parking.

To encourage such learning, we presented the agent with the goal of driving on a different street

segment than its current one. To achieve this objective, it resorted to problem solving, which found

a solution path that involved changing to the rightmost lane, staying aligned and centered until

the intersection, steering right into the target segment, turning the corner, and finally aligning and

centering in the new lane. We let the Icarus agent practice this task for five trials to examine its

improvement with experience. We repeated this procedure ten different times with slightly different

starting positions, collected performance measures for each run, and averaged the results.

Figure 2 shows the total number of cycles as a function of the number of trials, along with the

number of planning and execution cycles required to achieve the goal. As the agent accumulates

knowledge about this task, problem solving disappears almost entirely, which causes the reduced

Page 14 Learning Hierarchical Skills

0 1 2 3 4 5

Number of trials

0
50

10
0

15
0

20
0

25
0

30
0

N
um

be
r

of
 c

yc
le

s
re

qu
ire

d
execution

planning

total

Figure 2. The total number of cycles required to solve a particular right-turn task along with the planning and
execution times, as a function of the number of trials. Each learning curve shows the mean over ten sets of trials and
95 percent confidence intervals.

number of total cycles. However, this problem is dominated by execution time, since the agent must

actually drive the vehicle to its destination. Execution cycles appear to increase, which occurs not

because the learned skills are inefficient but rather because time progresses even during problem

solving. Thus, the vehicle moves in the right direction during this period in the early trials, reducing

the distance that remains to travel. As problem solving becomes unnecessary, the agent drives this

extra distance under conscious control rather than accidentally. CPU time remained approximately

the same with increased experience, presumably for the same reasons.

Table 4 shows the five skill clauses acquired during one of these runs. The two clauses for driving-

in-segment specify different decompositions for achieving this top-level goal under alternative start

conditions. The second of these refers to the clause for in-segment, which refers to the learned sub-

skill for in-intersection-for-right-turn and the primitive skill steer-for-right-turn. The former refers

to in-rightmost-lane, which invokes the primitive skill clause driving-in-segment, but it also calls

on itself recursively with distinct arguments. For clarification, the table also presents the primitive

clause for in-intersection-for-right-turn, which the system was given as background knowledge.

Figure 3 shows a trace of the agent’s behavior on the task during learning, in a situation that

involves a street with two lanes, and afterwards, in a setting that instead involves three lanes. The

trace of the vehicle’s movement demonstrates that the learned skills generalize to cases that involve

more lanes than were present during training. This ability follows directly from the recursive struc-

ture of the learned in-intersection-for-right-turn clause. Behavior after learning is also smoother,

presumably because the agent need not engage in problem solving when it overshoots slightly after

getting into the target lane in preparation for the right turn.

6.3 Experiment with the Blocks World

Although the Blocks World is far less dynamic than in-city driving, it lends itself to scaling studies

that involve generalization to tasks with varying numbers of objects. For this domain, we provided

Icarus with the four primitive skills in Table 2 and 11 concepts that were sufficient, in principle,

Learning Hierarchical Skills Page 15

Table 4. Five skill clauses learned for in-city driving, along with a primitive skill for the same domain.

; highest-level skill clause for situations that require a lane change

(driving-in-segment (?me ?g994 ?g1021) 47

:percepts ((segment ?g994) (lane-line ?g1021) (self ?me))

:start ((in-segment ?me ?g994) (steering-wheel-straight ?me))

:ordered ((in-lane ?me ?g1021) (centered-in-lane ?me ?g994 ?g1021)

(aligned-with-lane-in-segment ?me ?g994 ?g1021)

(steering-wheel-straight ?me)))

; highest-level skill clause for situations that require right turns

(driving-in-segment (?me ?g998 ?g1008) 46

:percepts ((segment ?g998) (lane-line ?g1008) (self ?me))

:start ((steering-wheel-straight ?me))

:ordered ((in-segment ?me ?g998) (centered-in-lane ?me ?g998 ?g1008)

(aligned-with-lane-in-segment ?me ?g998 ?g1008)

(steering-wheel-straight ?me)))

; skill clause for handling right turns

(in-segment (?me ?g998) 44

:percepts ((self ?me) (intersection ?g978) (segment ?g998))

:start ((last-lane ?g1021))

:ordered ((in-intersection-for-right-turn ?me ?g978)

(steer-for-right-turn ?me ?g978 ?g998)))

; skill clause that prepares the agent for a right turn

(in-rightmost-lane (?me ?g1021) 45

:percepts ((self ?me) (lane-line ?g1021))

:start ((last-lane ?g1021))

:ordered ((driving-in-segment ?me ?g994 ?g1021)))

; recursive skill clause that takes first step needed for right turn

(in-intersection-for-right-turn (?me ?g978) 48

:percepts ((lane-line ?g1021) (self ?me) (intersection ?g978))

:start ((last-lane ?g1021))

:ordered ((in-rightmost-lane ?me ?g1021)

(in-intersection-for-right-turn ?me ?g978)))

; primitive skill that is called recursively by learned clause

(in-intersection-for-right-turn (?self ?int) 49

:percepts ((self ?self) (segment ?sg) (intersection ?int)

(lane-line ?lane segment ?sg))

:start ((in-rightmost-lane ?self ?lane))

:requires ((in-segment ?self ?sg) (intersection-ahead ?int)

(last-lane ?lane))

:actions ((*cruise))

:effects ((in-intersection-for-right-turn ?self ?int)))

Page 16 Learning Hierarchical Skills

Figure 3. A trace of the Icarus driving agent’s behavior, during and after learning, on a task that required changing
to the rightmost lane and turning at the intersection. The trace demonstrates generalization to a new setting with a
different number of lanes.

to solve any problem. We then presented the agent with the problems in sequence, using each task

as a training problem but also recording the number of cycles and CPU time required to complete

it. Because misguided search combined with execution can lead the problem solver into undesirable

physical states, we told it to halt if it had not finished a run within 100 cycles and to start over

from the initial state. However, the agent could attempt a given problem only five times, and

thus spend at most 500 cycles before giving up entirely. We also limited the stack depth to ten

goal elements. We enforced these constraints for reasons of practicality and because we think they

reflect the manner in which humans tackle novel problems.

We generated randomly a set of random Blocks World tasks that involved settings with 5, 10,

15, 20, 25, and 30 blocks. Each complexity class had 67 to 69 distinct problems, which we ordered

by difficulty class (five-block tasks first and 30-block tasks last). The intuition was that the system

would learn more effectively if we presented it first with simpler problems, which it could then use

in solving more difficult ones. To this end, Icarus retained skills acquired on successful runs for use

in later tasks. We provided the system some 400 randomly generated problem orders and recorded

the number of cycles and CPU times needed for each task. As a control, we also ran the system

with its learning mechanisms off for another 400 problem sets that were ordered randomly within

difficulty classes. Because the problems require different amounts of effort, traditional learning

curves are not very informative. Instead, following Minton (1990), we report cumulative cycles and

CPU times as a function of the number of training problems.

Figure 4 shows the resulting curves, including 95 percent confidence intervals around each mean.

As expected, the curves mainly take the form of superlinear functions whose slopes increase with

problem difficulty. Although the large scale of plots made the learning and non-learning curves look

Learning Hierarchical Skills Page 17

0 67 134 201 268 335 402

Number of problems encountered

0
52

60
10

52
0

15
78

0
21

04
0

26
30

0

N
um

be
r

of
 c

yc
le

s
re

qu
ire

d

learning off

learning on

0 67 134 201 268 335 402

Number of problems encountered

0
82

00
16

40
0

24
60

0
32

80
0

41
00

0

C
P

U
 ti

m
e

re
qu

ire
d

learning off

learning on

Figure 4. Cumulative number of cycles and CPU times required by Icarus to solve a Blocks World task as a function
of the number of problems encountered, averaged over 400 runs and with problems ordered by difficulty, with the
goal stack of size ten. Tick marks on the horizontal axis indicate shifts in problem complexity.

similar for early parts of the curves, there was some benefit for learning even from the beginning,

but the difference grows substantially as the systems encounter harder problems. Clearly, prior

experience reduces search substantially when it reaches problems with many blocks, and there is

no evidence that learning produces a utility problem. Remember that we have made the transfer

of learned knowledge challenging in that none of the problems are isomorphic, although they may

involve isomorphic subtasks. The results indicate that Icarus can take advantage of this similar

substructure to reduce its effort on later problems.

6.4 Experiment with FreeCell Solitaire

To ensure that our conclusions held for more than the Blocks World, we carried out a similar

experiment with FreeCell solitaire, which we described earlier in this section. We gave the Icarus

agent only the 12 basic skills needed to move cards and the top-level goal of getting all cards into

foundation cells, along with 24 concepts for describing situations. Unlike the Blocks World, this

domain has only one goal condition, but it still has many possible starting states.

For this study, we randomly generated 20 problems each that involved 8, 12, 16, 20, and 24 cards.5

We ran the system on 300 different sequences of tasks, with simpler problems being presented

earlier but ordered randomly within each of the five difficulty classes. As before, we expected that

the agent would learn skills from the easier problems that would assist on the harder ones, thus

reducing problem-solving effort. For comparison, we presented another 300 random sequences to a

non-learning system with the same initial skills and concepts.

Figure 5 presents the cumulative results for this experiment, with error bars that indicate the

95% confidence intervals. As in the Blocks World, the difference between the learning and non-

learning conditions is substantial. However, problems with 20 cards or more require a different

5. Icarus’ problem solver has difficulty with FreeCell tasks that involve 30 or more cards, apparently because they

involve goal interactions that basic means-ends analysis cannot handle.

Page 18 Learning Hierarchical Skills

0 20 40 60 80 100

Number of problems encountered

0
46

00
92

00
13

80
0

18
40

0
23

00
0

N
um

be
r

of
 c

yc
le

s
re

qu
ire

d

learning off

learning on

0 20 40 60 80 100

Number of problems encountered

0
19

20
0

38
40

0
57

60
0

76
80

0
96

00
0

C
P

U
 ti

m
e

re
qu

ire
d

learning off

learning on

Figure 5. Cumulative number of cycles and CPU times required by Icarus to solve a FreeCell task as a function of
the number of problems encountered, averaged over 300 runs and with problems ordered by difficulty.

class of skills that involve column-to-column moves, which caused the lessened gap between the two

conditions around the 80th problem. However, once they have been acquired, these skills provide

some advantage, as evidenced by the downturn in the curve for the learning system on the far right

of the graphs. Again, we detected no sign of a utility problem as the agent accumulates knowledge

in this domain.

7. Related Research

Research on learning cognitive skills from problem solving has a long history within both AI and

cognitive science. For example, work on explanation-based learning often aimed to improve ef-

ficiency on problem-solving tasks and combined experience with a domain theory to create new

cognitive structures. Some techniques focused on the acquisition of search-control rules to guide

problem solving, but other efforts dealt instead with the construction of macro-operators from

primitive operators (e.g., Iba, 1988; Mooney, 1989; Shavlik, 1989). Our approach to skill learn-

ing comes closer to the second paradigm, since both involve composing knowledge elements into

larger structures. However, Icarus adapts this idea to the creation of disjunctive and even re-

cursive skill hierarchies, whereas traditional methods emphasized the creation of ‘fixed-sequence’

macro-operators that were far less flexible.

Icarus also bears some similarity to other cognitive architectures that incorporate varieties of

analytical or explanation-based learning. For example, Laird, Rosenbloom, and Newell’s (1986)

Soar revolves around a problem solver that proceeds until the system encounters an impasse, in

which case it creates a subgoal to resolve it. This resolution may require search and take some

time to produce the information necessary. Once the impasse has been handled, Soar creates a

chunk that encodes a generalized explanation of the result in terms of the original goal context.

Intermediate steps from the solution are lost, but the acquired chunk lets the system sidestep similar

impasses in the future.

Learning Hierarchical Skills Page 19

Anderson’s (1993) ACT-R employs a related mechanism, called compilation, which creates new

production rules from ones that are involved in the same reasoning chain. This scheme produces

very specific rules that replace variables with the declarative elements against which they matched,

rather than forming generalized structures, as do Icarus and most other systems that learn macro-

operators or search-control rules. In fact, our approach is more akin to the composition process

that played a role in earlier versions of ACT (Neves & Anderson, 1981), though this mechanism

produced fixed behavioral sequences rather than flexible skill hierarchies.

Icarus’ closest architectural relative is Prodigy (Minton, 1990), which invokes means-ends

analysis to solve problems and uses an analytical method to learn either search-control roles or

macro-operators from problem-solving traces. Veloso and Carbonell (1993) also describe an exten-

sion that records these traces in memory and solves new problems by derivational analogy with

earlier ones. None of these mechanisms generates explicit hierarchical structures, but Veloso and

Carbonell’s approach provides flexibility similar to that found in Icarus, and the two systems

record and utilize very similar information in their goal stacks.

Some other systems support learning in problem-solving domains without making strong ar-

chitectural commitments. Ruby and Kibler’s (1991) SteppingStone learns generalized rules for

decomposing complex problems into simpler ones, which it obtains through mixed use of exist-

ing problem-reduction rules and forward-chaining exhaustive search when it reaches an impasse.

Marsella and Schmidt’s (1993) system also acquires task-decomposition rules that incorporate par-

tial orderings among components. Their system combines forward and backward search to identify

candidate state pairs, which in turn produce hypothesized problem-reduction rules that are revised

based on further experience.6

Perhaps the closest relative to our approach is Reddy and Tadepalli’s (1997) X-Learn, which

acquires goal-decomposition rules from a sequence of training problems. Their system does not

include an execution engine, but it generates recursive hierarchical plans in a manner that also

identifies declarative goals with the heads of learned clauses. However, because it invokes forward-

chaining rather than backward-chaining search to solve new problems, it relies on the trainer to

determine hierarchical structure. X-Learn also uses a quite sophisticated mixture of analytical and

inductive techniques to determine conditions on skills, rather than the much simpler method that

Icarus incorporates.

Another key difference from X-Learn, PRL, and Steppingstone is that Icarus learns skills for

use in reactive execution rather than for use in planning. There has been other work on this topic,

but it has emphasized the acquisition of flat controllers rather than hierarchical structures. For

instance, Benson’s (1995) TRAIL learns teleoreactive controllers for physical agents, but it invokes

inductive logic programming to determine rules for individual actions. Fern et al. (2004) report

an approach to learning reactive controllers that trains itself on increasingly complex problems,

but that also acquires decision lists for action selection. Khardon (1999) considers the related

task of learning hierarchical controllers, but his formal analysis assumes the agent is provided with

annotated sample solutions rather than being generated through problem solving.

6. Ilghami et al. (2002) present another system that organizes plan knowledge in a hierarchical manner, but it learns

conditions for clause selection rather than the structure of the hierarchy itself.

Page 20 Learning Hierarchical Skills

Other researchers have built systems that support cumulative learning outside the context of

problem-solving tasks. One early example was Sammut and Banerji’s (1986) Marvin, which learns

increasingly complex logical concepts that are composed of ones it has mastered previously. Stone

and Veloso (2000) take a similar approach to learning concepts and controllers for playing robotic

soccer, although their system acquires quite different types of structure at each level of description.

Stracuzzi and Utgoff’s (2002) STL algorithm receives training cases about many concepts in parallel,

but it learns complex ones only when it has acquired simpler structures that let it master them

with little effort. Pfleger (2004) describes another system that acquires hierarchical patterns in an

on-line setting, in this case from unsupervised data. Like Marvin and STL, it learns conceptual

structures from the bottom up, so that more complex patterns are apparent after simpler ones have

been acquired.

8. Concluding Remarks

In the preceding pages, we presented Icarus, a cognitive architecture for physical agents that uses

stored concepts and skills, both organized in hierarchies, to recognize familiar situations and control

behavior. We described a new module that supports means-ends problem solving on novel tasks,

along with a learning mechanism that produces new skills from traces of problem solutions. This

method operates in an incremental manner, creating hierarchical structures that refer to others

learned earlier. In addition, we reported experiments with in-city driving, the Blocks World, and

FreeCell that showed such learning enables more effective behavior on unfamiliar problems than

solving them with only basic knowledge about the domain.

Despite these advances, our work on skill learning in Icarus is still in its early stages. For

instance, we should demonstrate its ability to learn hierarchical structures both on traditional

cognitive tasks like multi-column subtraction and on other dynamic domains that, like in-city

driving, require the integration of problem solving with reactive control. Future work on driving

should show that our methods are sufficient to acquire more complicated skills that involve extended

tasks like package delivery and complex settings that include other vehicles. Another promising

class of domains for studying skill learning involves two-person games like chess, which seem certain

to introduce new challenges because of their extended duration.

In addition, Icarus’ methods for problem solving and hierarchical learning would benefit from

new capabilities. We noted earlier that the current system does not chain backward from the start

conditions of learned skill clauses. Extending the problem solver to support this ability would

mean defining new concepts that characterize the situations in which learned skills are applicable.

This addition would also remedy another limitation of the current system, namely its inability to

account for the origin of concept hierarchies, which it assumes are given. Such an extension would

be straightforward for some tasks, but others will require the ability to acquire recursive concepts.

Augmenting the system in this manner may also lead to a utility problem, not during execution of

learned skills but during the problem solving used for their acquisition, which we would then need

to overcome.

Learning Hierarchical Skills Page 21

Another drawback is the architecture’s reliance on purely deductive inference, which differs

markedly from the probabilistic approach taken by its earliest ancestor (Langley et al., 1991).

Future versions of the framework should extend the representation of concepts and skills to in-

corporate probabilities, replace deductive processes with abductive methods that make plausible

default inferences, and augment problem solving to operate over skills with uncertain outcomes.

We hypothesize that the current mechanisms for learning the structure of skills can be adapted

easily to this setting, but we should also introduce methods for estimating the probabilities that

annotate the symbolic structures.

We should also note that, although our approach learns skills that generalize to situations with

different numbers of objects, its treatment of goals is less flexible. For example, Icarus can acquire

a general procedure for clearing a block that does not depend on the number of blocks above it,

but it cannot learn a procedure for constructing a tower with arbitrarily specified components.

Extending the method’s ability to learn about such recursive goal structures is another important

direction for future research that will bring the architecture into closer alignment with the abilities

observed in complex human learning.

Acknowledgements

This research was funded in part by Grant HR0011-04-1-0008 from DARPA IPTO and by Grant

IIS-0335353 from the National Science Foundation. Discussions with Glenn Iba, David Nicholas,

Stephanie Sage, Dan Shapiro, and Jude Shavlik contributed to many ideas presented here.

References

Anderson, J. R. (1993). Rules of the mind . Hillsdale, NJ: Lawrence Erlbaum.

Asgharbeygi, N., Nejati, N., Langley, P., & Arai, S. (2005). Guiding inference through relational

reinforcement learning. Proceedings of the Fifteenth International Conference on Inductive Logic

Programming . Bonn, Germany: Springer.

Benson, S. (1995). Induction learning of reactive action models. Proceedings of the Twelfth Inter-

national Conference on Machine Learning (pp. 47–54). San Francisco: Morgan Kaufmann.

Choi, D., Kaufman, M., Langley, P., Nejati, N., & Shapiro, D. (2004). An architecture for persis-

tent reactive behavior. Proceedings of the Third International Joint Conference on Autonomous

Agents and Multi Agent Systems (pp. 988–995). New York: ACM Press.

Choi, D., & Langley, P. (2005). Learning teleoreactive logic programs from problem solving. Pro-

ceedings of the Fifteenth International Conference on Inductive Logic Programming . Bonn, Ger-

many: Springer.

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence, 12 , 231–272.

Fern, A., Yoon, S. W., & Givan, R. (2004). Learning domain-specific control knowledge from

random walks. Proceedings of the Fourteenth International Conference on Automated Planning

and Scheduling (pp. 191–199). Whistler, BC: AAAI Press.

Page 22 Learning Hierarchical Skills

Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern/many object pattern match

problem. Artificial Intelligence, 19 , 17–37.

Jones, R. M., & Langley, P. (in press). A constrained architecture for learning and problem solving.

Computational Intelligence.

Iba, G.A. (1989). A heuristic approach to the discovery of macro-operators. Machine Learning , 3 ,

285–317.

Ilghami, O., Nau, D. S., Muñoz-Avila, H., & Aha, D. W. (2002). CaMeL: Learning method pre-

conditions for HTN planning. Proceedings of the Sixth International Conference on AI Planning

and Scheduling (pp. 131–14). Toulouse, France.

Khardon, R. (1999). Learning to take actions. Machine Learning , 35 , 57–90.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in Soar: The anatomy of a general

learning mechanism. Machine Learning , 1 , 11–46.

Langley, P., Cummings, K., & Shapiro, D. (2004). Hierarchical skills and cognitive architectures.

Proceedings of the Twenty-Sixth Annual Conference of the Cognitive Science Society (pp. 779–

784). Chicago, IL.

Langley, P., McKusick, K. B., Allen, J. A., Iba, W. F., & Thompson, K. (1991). A design for the

Icarus architecture. SIGART Bulletin, 2 , 104–109.

Langley, P., & Stromsten, S. (2000). Learning context-free grammars with a simplicity bias. Pro-

ceedings of the Eleventh European Conference on Machine Learning (pp. 220–228). Barcelona:

Springer-Verlag.

Marsella, S., & Schmidt, C. F. (1993). A method for biasing the learning of nonterminal reduction

rules. In S. Minton (Ed.), Machine learning methods for planning . San Mateo, CA: Morgan

Kaufmann.

Minton, S. N. (1990). Quantitative results concerning the utility of explanation-based learning.

Artificial Intelligence, 42 , 363–391.

Mooney, R. J. (1989). The effect of rule use on the utility of explanation-based learning. Proceedings

of the Eleventh International Joint Conference on Artificial Intelligence (pp. 725–730). Detroit:

Morgan Kaufmann.

Nardi, D., & Brachman, R. J. (2002). An introduction to description logics. In F. Baader et al.

(Eds.), Description logic handbook . Cambridge: Cambridge University Press.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

Newell, A., Shaw, J. C., & Simon, H. A. (1960). Report on a general problem-solving program for a

computer. Information Processing: Proceedings of the International Conference on Information

Processing (pp. 256–264). UNESCO House, Paris.

Nilsson, N. (1994). Teleoreactive programs for agent control. Journal of Artificial Intelligence

Research, 1 , 139–158.

Pfleger, K. (2004). On-line cumulative learning of hierarchical sparse n-grams. Proceedings of the

Third International Conference on Development and Learning . San Diego, CA: IEEE Press.

Reddy, C., & Tadepalli, P. (1997). Learning goal-decomposition rules using exercises. Proceedings

of the Fourteenth International Conference on Machine Learning (pp. 278–286). San Francisco:

Morgan Kaufmann.

Learning Hierarchical Skills Page 23

Richman, H. B., Staszewski, J. J., & Simon, H. A. (1995). Simulation of expert memory using

EPAM IV. Psychological Review , 102 , 305–330.

Ruby, D., & Kibler, D. (1991). SteppingStone: An empirical and analytical evaluation. Proceedings

of the Tenth National Conference on Artificial Intelligence (pp. 527–532). Menlo Park, CA: AAAI

Press.

Sammut, C., & Banerji, R. B. (1986). Learning concepts by asking questions. In R. S. Michalski,

J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach

(Vol. 2). Los Altos, CA: Morgan Kaufmann.

Shapiro, D., Langley, P., & Shachter, R. (2001). Using background knowledge to speed rein-

forcement learning in physical agents. Proceedings of the Fifth International Conference on Au-

tonomous Agents (pp. 254–261). Montreal: ACM Press.

Shavlik, J. W. (1989). Acquiring recursive concepts with explanation-based learning. Proceedings

of the Eleventh International Joint Conference on Artificial Intelligence (pp. 688–693). Detroit,

MI: Morgan Kaufmann.

Stone, P., & Veloso, M. M. (2000). Layered learning. Proceedings of the Eleventh European Con-

ference on Machine Learning (pp. 369–381). Barcelona: Springer-Verlag.

Utgoff, P., & Stracuzzi, D. (2002). Many-layered learning. Proceedings of the Second International

Conference on Development and Learning (pp. 141–146).

Veloso, M. M., & Carbonell, J. G. (1993). Derivational analogy in Prodigy: Automating case

acquisition, storage, and utilization. Machine Learning , 10 , 249–278.

Page 24 Learning Hierarchical Skills

Appendix: Concepts and Skills Provided in Experiments

Table 5. Concepts and skills provided to Icarus for the in-city driving domain, with italics denoting the goal concept
and parentheses indicating the number of clauses for disjunctive skills.

primitive concepts (15) nonprimitive concepts (26) primitive skills (19)

stopped parked in-intersection-for-right-turn

moving aligned-with-lane-in-segment aligned-with-lane-in-segment

in-segment centered-in-lane steering-wheel-straight

in-intersection-for-right-turn steering-wheel-not-straight centered-in-lane (2)

in-intersection driving-in-segment in-lane (2)

intersection-ahead at-speed-for-right-turn stopped

segment-to-right ready-for-right-turn moving

on-right-side-of-road-in-segment in-leftmost-lane adjust-speed-for-cruise

in-lane lane-to-right adjust-speed-for-right-turn (2)

steering-wheel-straight lane-to-left get-on-right-side-of-road

at-speed-for-cruise in-rightmost-lane cruise-within-segment

slow-for-right-turn in-right-turn-lane steer-for-right-turn

fast-for-right-turn off-centered-to-right-in-segment change-lane-to-right

first-lane off-centered-to-left-in-segment change-lane-to-left

last-lane building-on-right cruise-into-intersection

building-on-left cruise

current-building

start-aligned-with-lane-in-segment

start-centered-in-lane-1

start-centered-in-lane-2

start-adjust-speed-for-cruise

start-cruise-within-segment

start-change-lane-to-right

start-change-lane-to-left

start-in-lane-1

start-in-lane-2

Learning Hierarchical Skills Page 25

Table 6. Concepts and skills provided to Icarus for the Blocks World, with goal concepts in italics.

primitive concepts (4) nonprimitive concepts (7) primitive skills (4)

on clear unstack

ontable three-tower pickup

holding two-tower-one-on-table stack

hand-empty unstackable putdown

pickupable

stackable

putdownable

Table 7. Concepts and skills provided to Icarus for FreeCell solitaire, with goal concept in italics.

primitive concepts (10) nonprimitive concepts (14) primitive skills (12)

starthome highest column-to-home

successor game-won column-to-newhome

colcolpair column-to-home-able column-to-freecell

available-cell column-to-newhome-able lastcolumn-to-home

available-column column-to-freecell-able lastcolumn-to-newhome

clear lastcolumn-to-home-able lastcolumn-to-freecell

on lastcolumn-to-newhome-able freecell-to-home

bottom lastcolumn-to-freecell-able freecell-to-newhome

incell freecell-to-home-able freecell-to-column

home freecell-to-newhome-able column-to-column

freecell-to-column-able freecell-to-new-column

column-to-column-able column-to-new-column

freecell-to-new-column-able

column-to-new-column-able

