
Learning Context-Free Grammarswith a Simplicity BiasPat Langley and Sean StromstenDaimlerChrysler Research and Technology Center1510 Page Mill Road, Palo Alto, CA 94304 USAlangley@isle.org sean@psych.stanford.eduAbstract. We examine the role of simplicity in directing the inductionof context-free grammars from sample sentences. We present a rationalreconstruction of Wol�'s SNPR { theGrids system { which incorporatesa bias toward grammars that minimize description length. The algorithmalternates between merging existing nonterminal symbols and creatingnew symbols, using a beam search to move from complex to simplergrammars. Experiments suggest that this approach can induce accurategrammars and that it scales reasonably to more di�cult domains.1 IntroductionIn this paper we focus on the task of inducing context-free grammars from train-ing sentences. Much recent work on this topic has dealt with learning �nite-statestructures, but there is considerable evidence that human language involves morepowerful grammatical representations. In context-free grammar induction, thelearner must �nd not only a set of grammatical rewrite rules but also the non-terminal symbols used in those rules. For example, in addition to deciding thatan English sentence can be composed of a noun phrase and a verb phrase, itmust also create de�nitions for these intermediate concepts.A central challenge of grammar induction involves the generative nature oflanguage. The learner must somehow create a knowledge structure that producesan in�nite number of sentences from a �nite set of training cases. Typically, thisrequires recursive or iterative structures, which can cause overgeneralizations. Ef-fective induction of context-free grammars requires strong constraints on searchthrough the space of candidates. One that often recurs in the literature is a biastoward simple grammars.This bias helps avoid one sort of trivial grammar that has a separate rulefor each training sentence and that does not generalize at all to new sentences.However, a naive notion of simplicity leads to another sort of trivial grammarthat admits any string of words and overgeneralizes drastically. A more usefulvariation on this idea views the grammar as a code and seeks to compress thesample sentences, minimizing the summed description length of the grammarand it derivations of training sentences. By `simplicity' then, we mean that ofthe grammar and the derivations of the training sentences under the grammar.



In the following pages, we examine the extent to which this notion of simplic-ity can successfully direct the grammar-induction process. We explore this ideain the context of Grids, a rational reconstruction of Wol�'s (1982) SNPR sys-tem. We �rst describe Grids' representation, performance component, learningalgorithm, and evaluation function, then present experimental studies designedto evaluate the system's learning behavior. In closing, we discuss related workon grammar induction and outline directions for future research.2 Grammar Induction Driven by SimplicityAs noted above,Grids represents grammatical knowledge as context-free rewriterules, using a top-level symbol (S), a set of nonterminals, and a set of terminalsymbols corresponding to words. Each rewrite rule includes one nonterminalsymbol on the left-hand side and one or more symbols on the right, indicatingthat one can replace the former with the latter in recognizing or generating asentence. Following VanLehn and Ball (1987), we restrict Grids' grammars sothat no rule has an empty right-hand side, the only rules of the form X ! Yare those in which Y is a terminal symbol, and every nonterminal appears inthe derivation of some sentence. This restriction does not limit representationalpower, as one can transform any context-free grammar into this form.The performance component of Grids is a top-down, depth-�rst parser thatrepeatedly substitutes the �rst nonterminal X in its string with the right-handside of a rewrite rule having X on the left. We do not view this performancealgorithm as part of our theoretical framework, and its implementation is farfrom e�cient. However, it does let Grids determine whether a given grammarparses a given string of words, and thus whether that grammar is overly general,overly speci�c, or accurate for the language at hand.2.1 Learning Operators and Search OrganizationGrids' approach to grammar induction, as in Wol�'s earlier system, relies ontwo learning operators. The �rst creates a nonterminal symbol X and an as-sociated rewrite rule that decomposes X into its constituents. In grammars fornatural languages, such symbols and their rules correspond to speci�c phrasesand clauses. The introduction of phrasal terms should be useful when certaincombinations of symbols tend to occur together in sentences. Table 1 (a) givesa simple example of this operator's e�ect.The second operator involves merging two nonterminal symbols into a singlesymbol. The resulting sets of rules with the same left-hand side correspond, ingrammars for natural languages, to word classes (e.g., nouns and verbs) andphrasal classes (e.g., noun phrases). Their introduction should be useful whencertain symbols tend to occur in similar contexts within the language. We shouldnote one important side e�ect of the merge operator. Given the rewrite ruleX ! Y : : : Z, merging X and Z produces the rule X ! Y : : :X , which involvesa recursive call. Table 1 (b) illustrates this outcome in a simple grammar, thoughmerging can also produce indirect recursions.



Table 1. The learning operators used in Grids include (a) creating a new symboland rewrite rule based on two existing symbols, and (b) merging two existing symbols,which can lead to redundant (and thus removed) rules, as well as to recursive grammars.(a) Creating symbol AP1 (b) Merging AP1 and AP2NP ! ART AP1NP ! ART ADJ NOUN NP ! ART AP2NP ! ART ADJ ADJ NOUN AP1 ! ADJ NOUNAP2 ! ADJ AP1+ +NP ! ART AP1 NP ! ART AP1NP ! ART ADJ AP1 AP1 ! ADJ NOUNAP1 ! ADJ NOUN AP1 ! ADJ AP1Grids starts by transforming the sample sentences into an initial `at' gram-mar that contains only rules of the form S ! X : : : Y (one for each observedsentence) and X ! W (for each word W ). Thus, each S rewrite rule and itsassociated word rules correspond to a single training instance, so that the initialgrammar covers all (and only) the training sentences. Symbol creation does notchange the coverage of a grammar, and symbol merging can never decrease thecoverage. Thus, as Grids proceeds, it only considers grammars with the sameor greater generality than the current hypothesis. The current version uses beamsearch, with a beam size of three, to control its steps through the resulting space.The learning process in Grids alternates between two modes, each relyingon a di�erent operator. First the system considers all ways of merging pairsof nonterminal symbols in each current grammar, producing a set of successorgrammars. When this action produces a new grammar that contains identicalrewrite rules, all but one of the redundant rules are removed. Next the systemuses an evaluation function, which we will discuss shortly, to select the best bgrammars from the successors, breaking ties among candidates at random. Ifthe evaluation metric indicates that at least one of the successors constitutesan improvement over the current best grammar, the new grammars become thecurrent best set and the system continues in this mode.However, if none of the new grammars scores better than the current bestcandidate, Grids switches from `merge' mode into `create' mode. Here the al-gorithm considers all ways of creating new terms, and their associated rules,from pairs of nonterminal symbols that occur in sequence within the grammars.Grids then substitutes the new term for all occurrences of the sequence in theprospective grammar. Again, it selects the best alternatives and, if some scorebetter than the current best grammar, the best b candidates become the currentset and the program continues in `create' mode; if not, Grids changes modesand again considers merging. The algorithm continues in this manner, alternat-ing between modes until neither leads to improvement, in which case it halts.



2.2 Directing Search with Description LengthWe have seen thatGrids carries out a beam search through the space of context-free grammars, starting with a speci�c grammar based on training sentences andmoving toward more general candidates. However, the space of grammars is largeand the system needs some evaluation metric to direct search toward promisingcandidates. To this end, it applies the principle of minimum description length,measuring the simplicity of each candidate grammarG in terms of the descriptionlength for G plus that for the training sentences, encoded as derivations in G.In this formulation, a hypothetical `receiver' must know how to interpretthe string of bits that encode the model and data. Grids encodes the rules ofthe grammar as strings of symbols separated by tokens of a stop symbol. Eachnonterminal token requires log(N+1) bits, whereN is the number of nonterminaltypes, and the terminals each require logPi, where Pi is the number of wordswith the same part of speech. The derivations are strings of rewrite rules. Theleft-hand side of each is known, at each point, given the previous rules, so it needonly distinguish among the R right-hand sides, which requires logR bits.Intuitively, this measure should shun large grammars with overly speci�crules, despite their short derivations, because other grammars will have smallerdescriptions and do nearly as well on the derivations. The measure avoids verysmall, overly general grammars because they can describe too many unobservedstrings, so that bits must be wasted in encoding the derivations of actual sen-tences just to distinguish them from these nonsentences. In general, a good codeassigns long encodings to rare strings and short encodings to common ones. Inour case, a good grammar may also forfeit entirely the ability to encode some(unobserved) strings in exchange for the ability to encode others (observed train-ing sentences) more e�ciently.3 Experimental Studies of Grids' BehaviorThe central hypothesis in our work was that simplicity, as measured by descrip-tion length, is a powerful bias for constraining the process of grammar induction.To evaluate this hypothesis, we carried out a number of experiments, which wereport after considering their design and the domains used therein.3.1 Grammatical Domains and Experimental DesignWe decided to use arti�cial grammars in our experiments, since they let usboth control characteristics of the domain and measure the correctness of theinduced knowledge structures. In particular, we designed the two subsets of En-glish grammar shown in Table 2. The �rst (a) includes declarative sentences witharbitrarily long strings of adjectives and both transitive and intransitive verbs,but no relative clauses, prepositional phrases, adverbs, or inections. The secondgrammar (b) contains declarative sentences with arbitrarily embedded relativeclauses, but has no adjectives, adverbs, prepositional phrases, or inections.These two grammars are unsophisticated compared to those required fornatural languages, but they involve recursion and generate an in�nite class of



Table 2. Two grammars used to generate training and test sentences for experimentswith the Grids algorithm. The �rst grammar (a) includes arbitrary strings of adjec-tives, whereas the second (b) supports arbitrarily embedded relative clauses.(a) (b)S ! NP VP S ! NP VPVP ! VERBI VP ! V NPVP ! VERBT NP NP ! ART NOUNNP ! the NOUN NP ! ART NOUN RCNP ! the AP NOUN RC ! REL VPAP ! ADJ VERB ! sawAP ! ADJ AP VERB ! heardVERBI ! ate NOUN ! catVERBI ! slept NOUN ! dogVERBT ! saw NOUN ! mouseVERBT ! heard ART ! aNOUN ! cat ART ! theNOUN ! dog REL ! thatADJ ! bigADJ ! oldsentences, thus providing tests ofGrids' ability to generalize correctly. However,one can also state both grammars as �nite-state machines, which involve itera-tion but not recursion, so we also examined two languages that required centerembedding. One involved sentences with a string of a's followed by an equalnumber of b's, whereas the other involved strings of balanced parentheses. Bothlanguages have been used as testbeds in earlier e�orts on grammar induction.For the two English subsets, we created 20 training sets with enough stringsin each for the program to reach asymptotic performance, with instances for theadjective phrase domain having a length of ten or less and those for the rela-tive clause grammar length 15 or less. For the parenthesis-balancing and (ab)nlanguages, we used the same strategy to generate training sets with maximumlengths of ten and 20, respectively.The measurement paradigms typically used for supervised learning tasks donot apply directly to grammatical domains. A grammar-induction system caninfer the right word classes with relative ease, making the real test whether itforms recursive rules that let it correctly generalize to sentences longer thanthose in the training sample. Thus, in generating our test sets, we used maxi-mum lengths of 15 and 20 for the adjective phrase and relative clause domains,respectively. For the parenthesis language, we generated all 65 legal strings oflength 12 or less as positive test cases, and enumerated all 15 sentences of length30 or less for the (ab)n language.Another issue concerns the need to distinguish errors of omission (failures toparse sentences in the target language), which indicate an undergeneral gram-mar, from errors of commission (failures to generate only sentences in the target



0 20 40 60 80 100 120

Number of training sentences

(a)

0.
0

0.
2

0.
4

0.
6

0.
8

1

P
ro

ba
bi

lit
y 

of
 p

ar
si

ng
 a

 le
ga

l s
en

te
nc

e

0 20 40 60 80 100 120

Number of training sentences

(b)

0.
0

0.
2

0.
4

0.
6

0.
8

1

P
ro

ba
bi

lit
y 

of
 g

en
er

at
in

g 
a 

le
ga

l s
en

te
nc

e

Fig. 1. Average learning curves for the adjective phrase grammar from Table 2, with(a) measuring the probability of parsing a legal test sentence and (b) the probabilityof generating a legal sentence.language), which indicate an overgeneral one. To estimate these terms, we usedthe target grammar T and each learned grammar L to generate sentence sam-ples, and then determined their overlap. We estimated errors of omission fromthe fraction of sentences generated by T that were parsed by L, and errors ofcommission from the fraction of sentences generated by L that were parsed by T .On the average, an undergeneral grammar will produce a low score on the �rstmeasure, whereas an overgeneral one will produce a low score on the second.3.2 Experimental ResultsWe intended our initial study to show that Grids could actually induce accurategrammars for all four domains. However, we were also interested in the rate oflearning, so we explicitly varied the number of training sentences available tothe system, at each level measuring the two accuracies of the learned grammar,averaged over 20 di�erent training sets.Figure 1 presents the learning curves for the adjective phrase grammar fromTable 2, with (a) showing results on the �rst measure, the probability of parsinga legal test sentence, and (b) showing those for the second, the probability ofgenerating a sentence parsed by the target grammar. The curves show both theaverage accuracy and 95% con�dence intervals as a function of di�erent numbersof training sentences. After 120 training cases, the learned grammars cover 95%of the positive test set, and all generated strings are legal.Somewhat di�erent results occurred with the relative clause language, asshown in Figure 2. As before, the probability of parsing the 500 legal test sen-tences increases with experience, though with many fewer examples, reaching100% after only 15 training items. However, in this case Grids' probability ofgenerating a legal sentence starts at 100%, falls to below 60% by the fourth case,then rebounds to perfect accuracy after processing 11 training sentences.Experimental results for the parenthesis balancing language (not shown here)are analogous to those for adjective phrases, and the learning curves for the (ab)nlanguage follow a very similar pattern, though the slopes are di�erent. Clearly,



0 10 20 30 40 50

Number of training sentences

(a)

0.
0

0.
2

0.
4

0.
6

0.
8

1

P
ro

ba
bi

lit
y 

of
 p

ar
si

ng
 a

 le
ga

l s
en

te
nc

e

large vocabulary

medium vocabulary

small vocabulary

0 10 20 30 40 50 60 70 80

Number of training sentences

(b)

0.
0

0.
2

0.
4

0.
6

0.
8

1

P
ro

ba
bi

lit
y 

of
 g

en
er

at
in

g 
a 

le
ga

l s
en

te
nc

e

large vocabulary

medium vocabulary

small vocabulary

Fig. 2. Learning curves for the relative clause grammar from Table 2, and for analogousgrammars that involve larger word classes, with (a) measuring the probability of parsinga legal test sentence and (b) the probability of generating a legal sentence.one goal of future research should be to explain the underlying causes of thesedistinctive patterns, as well as the widely di�ering rates of learning.Although our test grammars are simple compared to those encountered innatural languages, their complexity is comparable to others reported in the lit-erature. Nevertheless, it would be good to understand the ability of the methodsembodied in Grids to scale to more di�cult induction tasks. To this end, wecarried out an additional experiment in which we increased the size of wordclasses. In particular, we extended the relative clause grammar from Table 2,which included two verbs, three nouns, and one relative pronoun, by doublingand tripling the number of words in each of these categories.Figure 2 compares the learning curves for these domains, using the two per-formance measures described earlier. Although increasing the size of the wordclasses slows down the learning process, the reduction in learning rate seemsquite reasonable. Speci�cally, the number of training sentences required to reachperfect accuracy appears to be no more than linear in the size of the word classes.Also, this factor seems to a�ect both performance measures equally.4 DiscussionOur approach to learning shares some of its central features with earlier workon grammar induction. We have already noted Grids' debt to Wol�'s (1982)SNPR system, which also carried out heuristic search using operators for creatingand merging symbols, and which used an evaluation function that traded o�a grammar's simplicity and its ability to `compress' the training data. Cook,Rosenfeld, and Aronson's (1976) early work grammar induction also used anoperator for creating nonterminal symbols, combined with hill-climbing searchdirected by a evaluation function similar in spirit to Wol�'s.Stolcke (1994) has carried out more recent research along similar lines, inde-pendently developing a grammar-induction algorithm that shares Grids' start-ing representation and its operations for symbol merging and creation. His sys-tem's evaluation metric also trades o� a grammar's simplicity with its ability



to account for observed sentences, but it learns probabilistic context-free gram-mars and processes training sentences incrementally. Gr�unwald (1996) has alsodeveloped an algorithm that uses a description-length score to direct search for`partial' grammars, again invoking operators for term creation and merging.The bias toward simplicity has arisen in other grammar-induction research,some quite di�erent in overall control structure. Examples include enumerativealgorithms that consider simpler grammars before more complex ones, as well asmethods that start with a randomly generated grammar and invoke simplicitymeasures to direct hill-climbing search. Not all work on grammar induction relieson the simplicity bias, but the idea plays a recurring role in the literature. Theliterature also contains many formal claims about language `learnability' undervarious conditions. Neither positive or negative results of this sort are relevantto our work, since we care not about guarantees but about practical methods.Undoubtedly, we can improve the Grids algorithm along many fronts. Forinstance, it assumes that each word belongs to only one category, whereas innatural languages the same word can serve as several parts of speech. Also, animpediment to larger-scale studies is that the run time of the initial `merge' op-erations increases with the square of the number of words. One strategy for deal-ing with the many possible merges involves trying only pairs with high scores onsome heuristic measure, perhaps computed over co-occurrence statistics. Anotherresponse would be to develop an incremental version of Grids that processesonly a few training sentences at a time and expands the grammar as necessary.We plan to explore both approaches to improving computational e�ciency.We cannot yet draw �nal conclusions about the role played by Grids' sim-plicity bias, as there exist other formulations of this idea not covered by ourexperimental evaluation. Nor can we yet tell whether other operators, or otherorganizations of the search process, will yield better or worse results. Clearly,more work remains to be done, but the results to date suggest the notion of sim-plicity has an important role to play in the acquisition of grammatical knowledge.ReferencesCook, C. M., Rosenfeld, A., & Aronson, A. (1976). Grammatical inference byhill climbing. Informational Sciences , 10 , 59{80.Gr�unwald, P. (1996). A minimum description length approach to grammar infer-ence. In S. Wermter, E. Rilo�, & G. Scheler (Eds.) Connectionist, statisticaland symbolic approaches to learning for natural language processing . LectureNotes in Computer Science, 1040. Berlin: Springer-Verlag.Stolcke, A. (1994). Bayesian learning of probabilistic language models . Doctoraldissertation, Division of Computer Science, University of California, Berkeley.VanLehn, K., & Ball, W. (1987). A version space approach to learning context-free grammars. Machine Learning , 2 , 39{74.Wol�, J. G. (1982). Language acquisition, data compression and generalization.Language & Communication, 2 , 57{89.


