
The Utility of Feature Weighting inNearest-Neighbor AlgorithmsRon Kohavi1 and Pat Langley2 and Yeogirl Yun3ronnyk@sgi.com, langley@cs.stanford.edu, yygirl@cs.stanford.edu1 Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 940432 Robotics Laboratory, Stanford University, Stanford, CA 943053 Electrical Engineering Dept., Stanford University, Stanford, CA 94305Abstract. Nearest-neighbor algorithms are known to depend heavily ontheir distance metric. In this paper, we investigate the use of a weightedEuclidean metric in which the weight for each feature comes from asmall set of options. We describe Diet, an algorithm that directs searchthrough a space of discrete weights using cross-validation error as itsevaluation function. Although a large set of possible weights can reducethe learner's bias, it can also lead to increased variance and over�tting.Our empirical study shows that, for many data sets, there is an advantageto weighting features, but that increasing the number of possible weightsbeyond two (zero and one) has very little bene�t and sometimes degradesperformance.1 IntroductionIn recent years, instance-based methods [5, 13, 1] have emerged as a promisingapproach to machine learning, with researchers reporting excellent results onmany real-world induction tasks. The basic approach involves storing trainingcases and their associated classes in memory and then, when given a test in-stance, �nding the training cases nearest to that test instance and using them topredict the class. One drawback of such methods is that, when combined witha naive distance metric that weights attributes equally, they can su�er from the\curse of dimensionality," in which the number of cases needed to maintain agiven error rate grows rapidly with the number of features [2].This observation has led some researchers to augment nearest-neighbor meth-ods with techniques for determining distinct weights for each feature. For in-stance, Cost and Salzberg [3] use di�erences in probability distributions acrossclasses to modify the distance metric for nominal attributes, whereas Daelemans,Gillis, and Durieux [4] and Wettschereck [13] use mutual information to computecoe�cients on numeric attributes. Aha [1] reports an incremental scheme that al-ters feature weights depending on their distance and predicted class. All of theseresearchers report improvement over the simple version of nearest neighbor thatgives attributes equal weight.In this paper we explore a di�erent approach to determining feature weightsfor nearest-neighbor classi�cation. Rather than considering a continuous weight

space, we restrict weights to a small, �nite set. This reduces representationalpower and hence increases bias, but it should also lower the variance and thusreduce chances of over�tting. We report on Diet, a system that incorporates awrapper method [7] to search the weight space using cross-validation error fromthe nearest neighbor algorithm. Experimental studies suggest that, on manynatural data sets, restricting the set of weights to only two alternatives|whichis equivalent to feature subset selection|gives the best results. A decompositionof errors into bias and variance helps explain these results.2 The Diet AlgorithmTo implement this idea, we had to adapt the wrapper approach, originally devel-oped for feature selection, to determine appropriate weights for use in nearest-neighbor classi�cation. Along the way, we needed to make a number of designdecisions about its operation.For example, we selected best-�rst search, which always expands the bestnode that has not yet been expanded, to explore the discrete weight space. Wealso needed some evaluation function to direct the search. As in earlier workwith wrappers, we used the estimated error of the induction algorithm, in thiscase nearest neighbor4, as measured by ten-fold cross-validation over the trainingdata.Our discrete approach to selecting feature weights required us to specifythe number of k nonzero weights being considered. This determined the set ofweights: 0, 1=k, 2=k, . . . , (k � 1)=k, 1. For the starting point in the search, wedecided to use the assignment closest to the middle weight and to use a zeroweight when k = 1 (i.e., when zero and one were the only possible weights).Note that, when k = 1, our approach is equivalent to feature subset selectionand the initial node ignores all attributes, thus predicting the most frequentclass.Heuristic search also requires operators for moving through the space. Herewe adopted operators that replaced the current weight for a feature with eitherthe next larger or smaller value in the allowed set, unless the maximum orminimumhas been reached. Finally, we selected a halting criterion that stoppedsearch when it encountered �ve consecutive nodes with no children having scoresmore than 0.1% better than their parent.Recall that each node evaluation requires a separate cross-validation run ofnearest neighbor, which appears expensive. However, because one can implementnearest neighbor in an incremental manner, we can get the cross-validation errorby removing each instance in a fold, classifying it, reinserting it, and repeatingfor other folds. Also, given n features, there are at most 2 � n branches at eachstep of the search, which should keep computational costs reasonable.We will refer to the above collection of design decisions as theDiet algorithm,since sometimes they cause features to lose weight, sometimes to gain weight,4 Throughout our studies we �xed the number of neighbors used in classi�cation toone, since our goal was to investigate feature weighting rather than this factor.

and sometimes to remain the same. Now that we have described our approachto feature weighting, we can consider some hypotheses about its behavior andsome experiments designed to test them.3 Hypotheses and Experimental DesignNaturally, we did not expect Diet to outperform other methods in all domains.For data sets that contain few or no irrelevant features, we would expect itto behave comparably to simple nearest neighbor, or slightly worse due to theincreased size of the hypothesis space. For domains in which relevant featureshave equal importance, we would expect Diet with few weights to outperformDiet with many weights.To test this hypothesis, we designed three arti�cial domains that involved�ve continuous features in the range [0� 1] and two classes, each incorporatinga target concept based on two prototypical instances, one for each class. Theprototypes were at (0:25; 0:25; : : : ; 0:25) and at (0:75; 0:75; : : : ; 0:75). The threedomains relied on the same prototypes but used di�erent feature weights. Todetermine the class for a randomly generated training or test instance from auniform distribution, we found the prototype P nearest to that instance (asde�ned by the domains' weights) and assigned it P 's class. Domain R assignedweights of 1 to all �ve features (making them all equally relevant), whereasdomain I assigned the weight 1 to three features and 0 to the other two, makingthe latter irrelevant. DomainW assigned the weight 1 to two features, 12 to twofeatures, and 0 to the last feature. We predicted that Diet would outperformnearest neighbor on the latter two domains and that, for domain W , running itwith two non-zero weights (0.5 and 1 besides 0) would outperform the variantwith only one non-zero weight.To ensure relevance, we also wanted to study Diet's behavior on naturaldomains. To determine candidates on which feature weighting would likely yieldimprovements, we inspected learning curves (which plot error against the numberof training cases) for domains from the UCI repository [11] and identi�ed six datasets (Anneal, Chess, Segment, Soybean-Large, Vehicle, and LED24) in whichnearest neighbor did not reach asymptote early in the curve. This suggestedthere was room for improvement on these data sets. We selected points on thelearning curve where nearest neighbor had not yet reached asymptote and usedthem to determine the number of cases in our training sets. We predicted thatDietwould outperform nearest neighbor in these situations. We also selected �veadditional UCI domains|Breast, Hypothyroid, Mushroom, Vote, and LED7|that did not have the above characteristic. We did not expect better results thannearest neighbor in these cases.For each domain, we randomly selected ten training sets and ten associated(and disjoint) test sets; Diet did not have access to these test sets when comput-ing its cross-validation estimates. Table 1 shows the characteristics of the variousdomains. In order to test our basic hypotheses, for each training-test partitionwe also ran simple nearest neighbor, using equal weights for each feature. We

Table 1. A summary of the domains used in the experimental study. Group Aconsists of our arti�cial domains, group B contains data sets in which nearestneighbor had not reached asymptote, and group C contains data sets in whichit appeared close to asymptotic performance.Group Data Set Train Size Test Size No. Features No. ClassesRelevants (R) 300 2700 5 2A Irrelevants (I) 300 2700 5 2Weights (W) 300 2700 5 2Anneal 100 798 38 6Chess 100 3096 36 2B Segment 300 2010 19 7Soybean-Large 100 583 35 19Vehicle 200 646 18 4LED24 200 3000 24 10Breast 100 599 10 2C Hypothyroid 200 2963 25 2Mushroom 100 8024 22 2Vote 100 335 16 2LED7 200 3000 7 10also ran Quinlan's C4.5 [12], a well-known decision-tree algorithm, and Aha'sIB4 [1], an instance-based algorithm which incorporates a di�erent weightingschemes that assigns weights to features incrementally. Our aim here was notto test speci�c hypotheses but simply to see how Diet fares compared to otherwell-known induction algorithms.4 Experimental ResultsLet us now consider the results of our comparative studies on the arti�cial do-mains described above, followed by those for the various UCI domains. In ane�ort to gain a deeper understanding of these results, we also analyze the bias-variance tradeo� for di�erent sets of possible weights.4.1 Experiments on Arti�cial DomainsThe results from our runs on the three arti�cial domains appear in Figure 1,which shows the mean error for each combination of algorithm and domain.(The notation \Diet W = k" indicates our feature-weighting algorithm whengiven k non-zero weights.) As predicted, nearest neighbor does produce slightlybetter results than the variants on domain R; its assumption that all features

C4.5 NN-1 IB4 Diet W=1 Diet W=2 Diet W=10

R (all relevant) I (some irrelevant) W (weighted)

%
 e

rr
or

0.00

5.00

10.00

15.00

20.00

25.00

Fig. 1. Absolute error rates on the three arti�cial domains.are equally relevant is perfect for the domain, whereas the other methods searcha larger space and thus have increased variance.However, the situation is quite di�erent for domain I, in which two featuresare irrelevant. As expected, all versions of Diet outperform nearest neighborhere, but we also see that increasing the number of weights actually increasesthe error. Inspection of individual runs revealed that, when told to use a singlenon-zero weight,Diet found the correct weights on all ten runs, whereas versionsthat allowed more weights sometimes generated 0.5 and 1.0 in the same run,thus giving poorer performance. IB4's weighting heuristic also failed to �nd theoptimal weights for this domain.We anticipated that Diet with two non-zero weights would outperform bothone non-zero weight and simple nearest neighbor on domain W , which we hadgenerated using di�erent weights. Indeed, this variant fares better than the oth-ers, but does not achieve the lowest possible error (7.44%), which we obtainedby running nearest neighbor with the correct weights. Examination of weightsfound in individual runs showed the system sometimes found nonoptimal values.Further experiments we have done show that in half the runs, the chosenweights had higher estimated accuracy than the estimated accuracy on the trueweights. In cases where the estimated accuracy of the chosen weights is lowerthan the true weights, further search might have helped, as it is clear that thesearch was stuck in a local optimum.However, in those cases where the estimateswere higher, the search was over�tting the weights to the data and increasing theamount of search would not have helped; the true weights would not be selectedas other weights were already estimated to be superior.

C4.5 NN-1 IB4 Diet W=1 Diet W=2 Diet W=10

an
ne

al

ch
es

s

se
gm

en
t

so
yb

ea
n

ve
hi

cl
e

le
d2

4

br
ea

st

hy
po

th
yr

oi
d

m
us

hr
oo

m

vo
te

le
d7

%
 E

rr
or

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Fig. 2. Absolute error rates on the 11 domains from the UCI repository.4.2 Experiments on UCI Data SetsFigure 2 presents the experimental results, in terms of absolute errors, for the 11domains from the UCI repository, whereas Figure 3 shows the analogous errorsmeasured relative to those for simple nearest neighbor. The most obvious resultis that Diet with one non-zero weight typically gives lower errors than near-est neighbor. In �ve domains (chess, segment, led24, hypothyroid, and vote) thedi�erences were signi�cant (p < 0:05), whereas in �ve others (anneal, led7, mush-room, soybean, vehicle) they were not. In only one domain (breast cancer) wasthe di�erence signi�cant in favor of nearest neighbor. Diet usually performedsubstantially better than IB4, the other instance-based weighting method weran for comparison. In some cases, our system also outperformed C4.5, even forsome domains in which it fared better than nearest neighbor.Also, note thatDiet did better than nearest neighbor not only in the domainswe predicted, where the latter had not yet reached asymptote, but also on somedata sets where we thought it had: hypothyroid and vote. Apparently, nearestneighbor was still improving on these domains, but the large number of features(24 and 16) gave a very low learning rate, making it appear as if it had reachedthe asymptotic error level. The �gure also reveals that increasing the number ofnon-zero weights above two rarely reduced classi�cation error. We noted minorimprovements when going from one to two non-zero weights on the anneal,breast, soybean-large, and vehicle domains, but using more weights led tolarge increases in error on other data sets. This e�ect is especially evident for theten-weight version of Diet, which failed to signi�cantly outperform the versionwith two non-zero weights on any domain.Despite our e�orts at e�cient implementation,Diet's reliance on the wrap-per approach makes it generally slow. Running times for a single training-test

C4.5 IB4 Diet W=1 Diet W=2 Diet W=10

an
ne

al

ch
es

s

se
gm

en
t

so
yb

ea
n

ve
hi

cl
e

le
d2

4

br
ea

st

hy
po

th
yr

oi
d

m
us

hr
oo

m

vo
te

le
d7

A
lg

o
/ N

ea
re

st
-n

ei
gh

bo
r

ra
tio

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Fig. 3. Relative error rates for the data sets. Quantities indicate the error of eachalgorithm divided by that of nearest neighbor, with values less than one indicatingimproved performance over this method.partition on an SGI Challenge varied from two minutes to about 30 minutes forDiet with ten non-zero weights, whereas simple nearest neighbor took less than40 seconds. Speeding this process is an important direction for future research,but it seems even more essential to understand the reasons why simple featureselection fared so well relative to Diet with larger sets of weights.4.3 Bias and Variance DecompositionOne way of understanding the behavior of algorithms is to decompose the errorrates into their components. Given a target concept, the average error of analgorithm for di�erent data sets of size m can be decomposed into a squaredbias component and a variance component [6].The squared bias measures how closely, for a random instance, the averageprediction of the learning algorithm matches the target value for that instance.An algorithm that uses a small set of models (e.g., only two weights) might notbe able to model the target appropriately due to lack of representational power.In such cases, the predictions will be biased. The variance term in the de-composition measures how much the learning algorithm's guess changes aroundits mean prediction as one varies the training set. If minor changes in trainingdata produce changes in predictions, it will have a high variance (colloquially, itover�ts the training set).Within the nearest-neighbor framework, feature weighting can reduce thebias because the distances between features shrink and nearest-neighbor thenbetter model local e�ects. If the feature weights selected do not vary much with

NN-1 bias

NN-1 var

Diet W=1 bias

Diet W=1 var

Diet W=2 bias

Diet W=2 var

Diet W=10 bias

Diet W=10 var

irr chess hypothyroid led24 segment

%
 E

rr
or

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Fig. 4. The bias and variance decomposition of error.changes in the training set, then the overall variance can be reduced as well,because the space is more densely populated when some weights are less thanone.For classi�cation problems, researchers have recently proposed di�erent de-compositions of bias and variance. We used the decomposition proposed by Ko-havi and Wolpert [9], which has the desirable property that it is equivalent tothe standard squared error loss (except for a leading constant of one-half) if oneviews the label as a vector of zero-one indicator variables and computes squarederror loss on the vector.Figure 4 shows the bias-variance decomposition of error for selected data setson which the error varied widely across di�erent versions of Diet. We generatedthese results by taking 25 samples from a data set �ve times the original sizeof the training set, keeping the rest of the instances to compute the bias andvariance.As expected, the �gure shows that feature weighting reduces the bias, es-pecially in chess and led24, which are known to have many irrelevant features.Introducing weights also drastically lowers the variance over nearest neighbor,especially when there is only one non-zero weight. Extreme examples of thise�ect occur in the domains I, chess, and led24. As we allow more weights, thevariance increases because the algorithm becomes unstable, due to the largenumber of weight settings that �t the training set well but do not match thetrue weights of the underlying distribution.The decomposition shows that the extra power given by an increased set ofweights (beyond one or two non-zero weights) did not further reduce the bias,while it usually increased the variance. For our setting, the overall utility ofincreasing the number above one or two non-zero weights was negative. Unless

there is good reason to believe that di�erent weights can help (as in the arti�cialdomain W), or unless the data sets are much larger, we recommend using onlya few weights in conjunction with the wrapper approach or similar methods.5 SummaryIn this paper we described Diet, an algorithm that uses a simple wrapperapproach to heuristically search through the set of weights used for nearest-neighbor classi�cation. Diet typically gave lower errors than simple nearestneighbor, which weights features equally, and usually did better than Aha's IB4,which incorporates an incremental weighting method. However, our most inter-esting �nding was that considering only a small set of weights typically gavebetter results than using a larger set. In fact, for the real-world data sets weexamined, running Diet with one non-zero weight, which assumes each featureis either relevant or irrelevant, was di�cult to outperform.More detailed analysis suggested that restricting the set of weights can reducethe algorithm's variance and thus lower its error rate. The naive assumption thatusing more weights will reduce classi�cation error is simply false: increasing theset of possible weights will increase the variance, and the bias-variance tradeo�will determine whether the overall performance improves. In our study, therewere no domains in which using more than two non-zero weights signi�cantlyreduced the classi�cation error. We should stress that our conclusions about thesuperiority of using one non-zero weight (feature subset selection) hold only inthe context of our wrapper approach to feature weighting and for small trainingsets.In future work, we should repeat our experiments with training sets of dif-ferent sizes, to determine whether more weights prove useful at later points inthe learning curve. We should also run comparative studies between Diet andother approaches to feature weighting. For example, Kelly and Davis [8] reportusing a genetic algorithm to search the space of feature weights, and Lowe [10]presents an alternative scheme that employs conjugate gradient descent throughthe weight space. Such comparisons will help determine the relative bene�ts ofthe two key ideas behindDiet: restricting the number of weights used in nearest-neighbor classi�cation and using a wrapper method to search the space of suchweights.AcknowledgmentsThis research was supported in part by Grant No. N00014-94-1-0448 from theO�ce of Naval Research and Grant No. IRI-9116399 from the National ScienceFoundation, for development of the MLC++ software used in the experiments,and in part by Grant No. F49620-94-1-0118 from the Air Force O�ce of Scienti�cResearch.

References1. David W. Aha. Tolerating noisy, irrelevant and novel attributes in instance-basedlearning algorithms. International Journal of Man-Machine Studies, 36(1):267{287, 1992.2. R. E. Bellman. Adaptive Control Processes : A Guided Tour. Princeton UniversityPress, NJ, 1961.3. Scott Cost and Steven Salzberg. A weighted nearest neighbor algorithm for learn-ing with symbolic features. Machine Learning, 10(1):57{78, 1993.4. W. Daelemans, S. Gillis, and G. Durieux. The acquisition of stress: A data-oriented approach. Computational Linguistics, 20, 1994.5. Belur V. Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classi�cationTechniques. IEEE Computer Society Press, Los Alamitos, California, 1990.6. Stuart Geman, Eli Bienenstock, and Rene�e Doursat. Neural networks and thebias/variance dilemma. Neural Computation, 4:1{48, 1992.7. George John, Ron Kohavi, and Karl Peger. Irrelevant features and the subsetselection problem. In Machine Learning: Proceedings of the Eleventh InternationalConference, pages 121{129. Morgan Kaufmann, July 1994.8. J. D Kelly and L. Davis. A hybrid genetic algorithm for classi�cation. In Proceed-ings of the Twelfth International Joint Conference on Arti�cial Intelligence, pages645{650. Morgan Kaufmann, 1991.9. Ron Kohavi and David H. Wolpert. Bias plus variance decomposition for zero-oneloss functions. In Lorenza Saitta, editor, Machine Learning: Proceedings of theThirteenth International Conference. Morgan Kaufmann, July 1996. Available athttp://robotics.stanford.edu/users/ronnyk.10. D. G. Lowe. Similarity metric learning for a variable-kernel classi�er. NeuralComputation, 7:72{85, 1995.11. Christopher J. Merz and Patrick M. Murphy. UCI repository of machine learningdatabases. At http://www.ics.uci.edu/~mlearn/MLRepository.html, 1996.12. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, SanMateo, California, 1993.13. Dietrich Wettschereck. A Study of Distance-Based Machine Learning Algorithms.PhD thesis, Oregon State University, 1994.
This article was processed using the LATEX macro package with LLNCS style

