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Abstract In this paper, we present an architecture for task-oriented dialogue that
integrates the processes of interpretation and generation. We analyze implemented
systems based on this architecture – one for meeting support and another for as-
sisting military medics – and discuss results obtained with the first. In closing, we
review some related dialogue architectures and outline plans for future research.

1 Introduction

Systems that use natural language to assist a user in carrying out some task must
interact with that user as execution of the task progresses. The system in turn must
interpret the user’s utterances and other environmental input to build a model of
what both it and the user believe and intend – in regard to each other and the en-
vironment. The system also requires knowledge to use the model it constructs to
participate in a dialogue with the user and support him in achieving his goals.

In this paper we report on two systems we have built for task-oriented dialogue
and describe the architecture that underpins them. The architecture integrates two
processes: dialogue interpretation, which builds an expanding model of the user’s
context in terms of their beliefs and goals, and dialogue generation, which uses this
interpretation of the situation and background knowledge to help the user achieve
his goals through a task-directed conversation. .
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In addition to integrating interpretation and generation, the architecture incor-
porates several other important features. Although we believe that domain-specific
knowledge is essential in intelligent systems, we also believe that intelligent be-
havior relies on abstract meta-level knowledge that generalizes across different do-
mains. In particular, we are interested in high-level aspects of dialogue: knowledge
and strategies relevant to dialogue processing that are independent of the actual con-
tent of the conversation. The architecture separates domain-level from meta-level
content, using both during interpretation and generation. The work we report is in-
formed by cognitive systems research, a key feature of which is arguably integration
and processing of knowledge at different levels of abstraction [7].

Another feature of our architecture is the incremental nature of its processes. We
assume that dialogues occur within a changing environment and that the tasks to
be accomplished are not predetermined but discerned as the dialogue proceeds. Our
architecture incrementally expands its understanding of the situation and the user’s
goals, acts according to this understanding, and adapts to changes in the situation,
sometimes choosing to pursue different goals. In other words, our architecture sup-
ports situated systems that carry out goal-directed dialogues to aid their users. In the
next section we discuss two implemented prototypes that demonstrate this key func-
tionality. We follow this with a detailed description in Section 3 of the underlying
architecture and a discussion of results in Section 4. We conclude with comments
on related work and plans for future research.

2 Application Systems for Task-Oriented Dialogue

In this section, we discuss two prototypes that incorporate our architecture as their
dialogue engine. The first system facilitates cyber-physical meetings by interacting
with humans and equipment; the second is an advisory system that collaborates with
a military medic to address the mutual goal of treating a patient. In each case, we
discuss the setting, the knowledge that drives behavior, and a sample dialogue that
illustrates operation. Neither system interacts with users in spoken language, but
each could be adapted to this end in a straightforward manner.

2.1 A System for Meeting Support

We have developed a system that supports ‘cyber-physical’ meetings in which a
number of human users interact with each other and with a number of devices to
pursue some joint activity. The specific scenario we examine here involves a session
between a physical therapist, a patient, and a relative of the patient who have the
shared aim of completing a physical therapy session. During the meeting, the users
carry out a dialogue that includes the system as a participant. The users and system
also interact with distributed sensors that measure leg motion, heart rate, and am-
bient light and temperature, as well as distributed actuators that include a ‘smart’
television and a text-to-speech generator.
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Table 1 Sample dialogue involving a physical therapist (Doctor), a patient (John), and the meeting
support system.

Doctor: John, please do leg lifts.
Patient: Okay. I will do leg lifts.
TV: [starts playing tutorial video about leg lifting]
Sensor: [sends movement signal to system]
System: Great start John!
Sensor: [sends movement signal to system]

[after patient does a few more leg lifts . . . ]
System: You are doing great, John!

[after a few more, the patient stops . . . ]
Patient: I can’t do any more leg lifts.
Doctor: It’s okay, John. That was good.
System: John, you did eight repetitions.
Patient: How many did I do in the previous session?
System: In the previous session you did five repetitions.

During a physical therapy session, users communicate by entering sentences
through a menu-based smart-phone interface, although we intend to replace this with
a spoken-language interface in future work. The current interface accepts sentences
in a controlled version of English, translates them into a logic-like representation,
and sends the result to the dialogue system for processing. At the same time, the
sensing devices send messages to the dialogue system via HTTP. Each user can see
the utterances of other users and those of the system via the phone interface.

The system has knowledge about activities that arise during a therapy session,
including physical activities the patient can carry out, such as repeatedly lifting a
leg, and therapist procedures, such as obtaining relevant patient information (from a
database or the patient), measuring range of movement, and tracking heart rate and
blood pressure. In a typical session, the system asks the patient standard questions
and the therapist asks additional ones. Then the therapist decides on the task for the
session and suggests it to the patient, relative, and system. If the patient or family
member accepts the proposed task, the system updates its model of the current sit-
uation and proceeds accordingly. The system supports the patient’s execution of a
task by tracking his progress, instructing the television to show a tutorial video, and
providing feedback. For instance, once sensor input reveals the patient has started
doing an exercise, it might encourage him by saying “Great start!”

Specific components of the meeting support system include a menu-based inter-
face on a smart phone to input English sentences, a phone application that serves
as a motion detector; a television for displaying tutorials and other support videos,
a heart-rate monitor, environmental sensors for temperature and lighting, an HTTP
client/server module for component communication, and the dialogue system. Ta-
ble 1 shows a sample dialogue for one of the physical therapy scenarios. In this
case, the patient John participates in a session in which he partially complete a leg
exercise under supervision of a therapist at a remote location. We will return to this
case study in Section 4, where we examine it in more detail.
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Table 2 Sample dialogue between a human medic and a more knowledgeable computer advisor.

Medic: We have a man injured!
Advisor: Okay. What type of injury?
Medic: He’s bleeding.
Advisor: How bad is the bleeding?
Medic: Pretty bad. I think it is an artery.
Advisor: Okay. Where is the injury?
Medic: It’s on the left leg.
Advisor: Apply pressure on the leg’s pressure point.
Medic: Roger that.
Advisor: Has the bleeding stopped?
Medic: No. He’s still bleeding.
Advisor: Okay. Apply a tourniquet.
Medic: Where do I put the tourniquet?
Advisor: Just below the joint above the wound.
Medic: Okay. The bleeding has stopped.

2.2 A Medic Assistant

Our second prototype involves scenarios in which a military medic on the battlefield
helps an injured teammate. Because the medic has limited training, he interacts with
the dialogue system to get advice on treating the person; the system plays the role of
a mentor with medical expertise. The medic and system collaborate towards achiev-
ing the shared goal of stabilizing the patient’s medical condition. The system does
not know the specific task in advance. Only after the conversation starts, and the
medic provides relevant information, does the system act on this content and re-
spond in ways that are appropriate to achieving the goal. The system does not effect
change on the environment directly; the medic provides both sensors and effectors,
with the system influencing him by giving instructions.

During an interaction, the system asks an initial sequence of questions that lead
the medic to provide details about the nature of the injury. This sequence is not pre-
determined, in that later questions are influenced by the medic’s responses to earlier
ones. Table 2 shows a sample dialogue in which the medic-system team attempts
to stabilize a person with a bleeding injury. The system possesses domain knowl-
edge about how to treat different types of injuries, taking into account their location,
severity, and other characteristics. The program can also adapt the treatment accord-
ing to the medic’s situation. For instance, it may try a different treatment for a wound
if the medic claims that he cannot apply a particular treatment because he lacks the
supplies necessary for that purpose.

This system uses a Web interface similar to a text-messaging application, al-
though again we plan to replace this with a spoken dialogue module in the future.
The medic types English sentences into a form element within the interface, which it
sends to the dialogue system via an HTTP request. The system in turn sends the con-
tent to a natural language processor that translates into a logical form our system can
interpret. We have used Skyphrase (http://www.skyphrase.com), a proprietary,
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semantically-driven language interpeter, for this purpose. Skyphrase sends back the
translation, again via HTTP, and the dialogue system uses the information to update
its model of the current situation. This drives the system’s continuing behavior in
pursuing the joint task. Lack of space constrains our discussion of the system here,
but we have provided further details elsewhere [6].

2.3 Discussion

Although the two systems we have just described are limited in many respects, de-
veloping them raised a number of new challenges that have not been fully addressed
by existing dialogue systems:

• As the dialogue and the users’ situation evolves, the system must update its ac-
count of the situation by interpreting new information as it arrives, including
dialogue utterances and sensor inputs.

• The system’s interaction with users is goal directed and involves joint activity
over time; this activity includes not only actions carried out by the users, but also
communicative actions and commands to device actuators.

• The system must establish a common ground [4] with its users, that is, it must
develop a shared model of the environmental situation and others’ mental states;
it must also update this joint model as circumstances change and information
flows among participants.

• The beliefs and goals of each participant are not stated explicitly, but the system
must infer enough of them to be effective; this involves using not only domain-
specific knowledge, but also more abstract knowledge that relates mental states
to communication events.

• The overall process is highly dynamic, as the system continuously draws infer-
ences from users’ utterances and other input to expand its understanding of the
evolving situation, and as it carries out activities to achieve goals as they arise.

Our application systems and architecture represent first steps towards addressing
these challenges. In the next section we describe the integrated architecture, an im-
plementation of which serves as the main component of the two systems above.

3 Agent Architecture

Now we can turn to our framework for task-oriented dialogue. We have focused on
supporting goal-directed behavior that is physically situated in dynamic contexts.
The architecture depends on a knowledge base that lets it generate inferences, in-
troduce goals, and execute actions. Input is multi-modal in that it might come from
speech, text, visual cues, or external sensors. We have implemented the architecture
in Prolog, making use of its support for embedded structures and pattern matching,
but its representation and control mechanisms diverge substantially from the default
Prolog inference engine, as we will see shortly.
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3.1 Representation and Content

As in research on cognitive architectures [9], we distinguish between a dynamic
short-term or working memory, which stores external inputs and inferences based
upon this information, and a more stable long-term memory, which serves as a store
of knowledge that is used to make inferences and organize activities.

Working memory is a rapidly changing set of ground literals that contains the
system’s beliefs and goals as it models the evolving situation. Literals for domain-
level content, which do not appear as top-level elements in working memory, are
stored as relational triples, as in [i1, type, injury] or [i1, severity, major]. This reifi-
cation lets the system examine and refer separately to different aspects of a single
complex concept, including its predicate.

Our representation also incorporates meta-level predicates, divorced entirely
from the domain level, to denote speech acts [1, 13]. The literature contains many
alternative taxonomies for speech acts; wew have adopted a reduced set of six types
that has been sufficient for our current purposes. These include:

inform(S,L,C): speaker S asks L to believe content C;
acknowledge(S,L,C): S tells L it has received and now believes content C;
question(S,L,C): S asks L a question C;
propose(S,L,C): S asks L to adopt goal C;
accept(S,L,C): S tells L it has adopted goal C;
reject(S,L,C): S tells L it has rejected goal C.

All domain-level and meta-level concepts in working memory are embedded within
one of two predicates that denote aspects of mental states: belief(A, C) or goal(A,
C) for some agent A and content C, as in belief(medic, [i1, type, injury]). A mental
state’s content may be a triple, [i, r, x], a belief or goal term (nested mental states),
an agent’s belief that some attribute has a value, as in belief wh(A, [i, r]), a belief
about whether some propositional content is true, as in belief if(A, C), or a meta-
level literal, such as the description of a speech act.

Long-term memory contains generic knowledge in the form of rules. Each rule
encodes a situation or activity by associating a set of triples in its head with a pat-
tern of concepts in its body. High-level predicates are defined by decomposition into
other structures, imposing an organization similar to that in hierarchical task net-
works [11]. Structures in long-term memory include conceptual knowledge, skills,
and goal-generating rules.

Conceptual knowledge comprises a set of rules which describe classes of sit-
uations that can arise relative to a single agent’s beliefs or goals. These typically
occur at the domain level and involve relations among states of the world. Concep-
tual rules define complex categories in terms of simpler ones and organize these
relatonal predicates into taxonomies.

Skills encode the activities that agents can execute to achieve their goals. Each
skill describes the effects of some action or high-level activity under specified con-
ditions. The body of a skill include a set of preconditions, a set of effects, and a set
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of invariants, along with a sequence of subtasks that are either executable actions,
in the case of primitive skills, or other skills, in the case of nonprimitive skills.

Goal-generating rules specify domain-level knowledge about the circumstances
under which an agent should establish new goals. For example, an agent might have
a rule stating that, when a teammate is injured, it should adopt a goal for him to be
stabilized. These are similar to conceptual rules, but they support the generation of
goals rather than inference of beliefs.

The architecture also includes more abstract, domain-independent knowledge at
th meta-level. This typically involves skills, but it can also specify conceptual rela-
tions (e.g., about transitivity). The most important structures of this type are speech
act rules that explain dialogue actions to patterns of agents’ beliefs and goals with-
out making reference to domain-level concepts. However, the content of a speech
act is instantiated as in any other concept. For example, the rule for an inform act is:

inform(S,L,C)← belief (S,C),
goal(S, belief (L,C)),
belief (S,belief (L,C)).

Here S refers to the speaker, L to the listener, and C to the content of the speech act.
Rules for other speech acts take a similar abstract form.

Finally, the architecture assumes additional meta-level knowledge in the form of
a dialogue grammar that recursively specifies valid patterns of speech acts. For ex-
ample, we can decompose a dialogue into a pattern consisting of a speaker S propos-
ing P to a listener L, followed by L’s acceptance A to S, followed by a dialogue. To
ensure a coherent account of the conversation, the framework includes meta-level
rules that indicate ‘conceptual agreement’ between the arguments of speech acts;
these ensure that answers to questions are consistent with the agent’s beliefs.

3.2 Architectural Processing

Our dialogue architecture uses these structures to operate in dynamic settings, both
interpreting and responding to inputs in terms of its available knowledge and current
model of the situation. Like a traditional cognitive architecture, it operates in cycles
that access relevant knowledge and use it to guide processing. This includes incre-
mentally extending its view of the common ground and its relation to active goals,
then applying skills that are appropriate to achieving those goals. On each cycle, the
architecture invokes a module for dialogue interpretation followed by another for
dialogue generation. We discuss the operation of each of these in turn.

Dialogue Interpretation. The most basic task confronting a dialogue system is
to understand its common ground with other agents. In natural settings many ut-
terances are elided and others may be misheard, yet it must still construct models
of participants’ mental states, making reasonable assumptions about necessary ele-
ments that are missing from working memory. To this end, the architecture’s inter-
pretation stage incorporates a form of abductive inference. This abduction mecha-
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nism prefers explanations that introduce few assumptions as possible while account-
ing for many of the ‘observations’ that arrive through speech acts.

The process first attempts to build support for a top-level rule, such as the exis-
tence of a dialogue in the pattern of speech acts, without making any assumptions.
If it cannot derive the rule’s head in this manner, then increases the tolerance to one
default assumption, then two, and so forth, continuing until reaching a maximum.
If the interpretation module finds a proof within this limit, then it adds the assumed
elements to working memory, where they become available for use on later rounds.

The abduction mechanism incorporates new utterances and other observations
into working memory at the start of each cognitive cycle. Their arrival can lead it
to introduce beliefs and goals for the participating agents as default assumptions,
with dialogue grammar rules building upon speech acts and other conceptual rules
lower in the proof tree. The module can also introduce omitted speech acts, such as
implicit acknowledgements, as default assumptions, which serve as terminal nodes
in the extended explanation.

Dialogue Generation. The architecture must also produce some response to con-
tinue the dialogue, which is the responsibility of a second module. On each cycle, the
first stage in this process inspects the goal-generating rules, finding which ones have
conditions that match against the current contents of working memory, instantiating
their arguments, and adding new top-level goals as a result.1 Next, an execution
stage selects a top-level goal to pursue and finds a skill clause with this goal in its
head and with conditions that match working memory. The module repeats this step
recursively, finding a path down through the skill hierarchy that, if executed, should
help in achieving the top-level goal. Upon reaching a primitive skill, the architecture
instantiates its variables and carries out its associated actions.

On the next cycle, the module might select the same top-level goal and repeat
this process, but, typically, the conditions of some skills along the previous path
will no longer be satisfied, so the architecture follows a slightly different route. This
leads the agent to carry out subskills in sequence, much as in the ICARUS cognitive
architecture [8]. The execution process is reactive in that it responds to changes
in the situation, but the influence of top-level goals also provides continuity over
time. The result is hierarchical behavior in which the agent traverses the branches
of an AND-tree, in which each terminal node is an executed primitive skill, across
multiple cognitive cycles.

The response of the dialogue generation mechanism also varies based on the
type of goal. Abduced goals typically result in the execution of a meta-level skill,
say one to communicate an instruction. On the other hand, goals inferred from goal-
generating rules typically result in the execution of domain-specific skills. Inter-
estingly, meta-level and domain-specific knowledge always interact at some point
during processing. For instance, a domain-specific skill may have a meta-level skill
as one of its subskills, while a generic skill, like one for communicating an instruc-
tion, is eventually instantiated with some domain-specific content.

1 The abductive inference mechanism can also introduce new top-level goals as default assump-
tions during its processing.
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4 Empirical Evaluation

As mentioned earlier, we have used the architecture to implement two dialogue sys-
tems, one for meeting support and another for advising medics. We only have space
here to report results of test runs with the first of them. We will use the interaction
in Table 1 to illustrate the structures and processes that arise during the system’s op-
eration. For instance, after the doctor’s utterance “John, do leg lifts,” the abductive
interpretation module produces a working memory that contains:2

belie f (dr, propose(dr, john, [[e1,exercise type, leg li f t], [e1,agent, john]]))
belie f ( john, propose(dr, john, [[e1,exercise type, leg li f t], [e1,agent, john]]))
goal(dr, [[e1,exercise type, leg li f t], [e1,agent, john]])
goal(dr,goal( john, [[e1,exercise type, leg li f t], [e1,agent, john]]))
belie f ( john,goal(dr, [[e1,exercise type, leg li f t], [e1,agent, john]]))
belie f ( john,goal(dr,goal( john, [[e1,exercise type, leg li f t], [e1,agent, john]])))

In other words, after the utterance, the system believes that both the doctor and
John believe a speech act occurred in which the speaker (doctor) proposes that the
listener (John) does a leg-lifting exercise, that the doctor has the goal that John do
leg lifts, that the doctor has the goal that John adopt the goal of leg lifting, and
that John also believes the doctor has these two goals. Upon entering the dialogue
generation module, the system does not find any goal-generating rules or any skills
with conditions that match. For this reason, it does not produce any new goals or
generate any utterances before it completes the cognitive cycle.

The next utterance is John’s response “Okay. I will do leg lifts,” which indicates
that he accepts the doctor’s proposal. The system starts a new cycle, with the first
step using abductive inference to expand its model of the common ground by adding
to working memory:

belie f ( john,accept( john,dr, [[e1,exercise type, leg li f t], [e1,agent, john]]))
belie f (dr,accept( john,dr, [[e1,exercise type, leg li f t], [e1,agent, john]]))
goal( john, [[e1,exercise type, leg li f t], [e1,agent, john]])
goal( john,belie f (dr,goal( john, [[e1,exercise type, leg li f t], [e1,agent, john]])))
belie f (dr,goal( john, [[e1,exercise type, leg li f t], [e1,agent, john]]))
goal(sys, [[e1,exercise type, leg li f t], [e1,agent, john]])

At this point, the system believes that both the doctor and John believe an accept
speech act occurred, that John has adopted the goal of leg lifting and wants the
doctor to believe that he now has this goal, that the doctor believes that John has
adopted the goal, and, since it aims to support the joint task and both parties have
adopted the goal, the system adopts the goal for itself.

In this case, the dialogue generation module matches a goal-generating rule
against these elements, producing a new goal to command the television to play
a physical therapy tutorial for the patient:

2 For readability, we omit the top level predicate belief(sys,Content) and only show the Content.
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goal(sys, sys message(tv, leg tutorial,nil))

The system acts on this goal during the execution stage, invoking a skill that sends
a command to the television to play the corresponding video.

During the next cognitive cycle, the system does not receive any utterance from
the human users, but a signal does arrive from the motion detector indicating that the
patient has lifted his leg. The interpretation module adds this information to working
memory as the fact:

observation(motion, [[ep2, type, leg li f t], [ep2,agent, john]])

where ep2 is a new constant that denotes an event of type leg lift whose agent is
John. In response, the abductive inference process extends the current explanation
by adding the elements:

belie f (sys, [ep2, type, leg li f t])
belie f (sys, [ep2,agent, john])
belie f (sys, [e1,current state,active])
belie f (sys, [e1,reps done,1])
belie f (sys, [e1, last rep time,1382124783.0])

The system now believes that a leg-lifting event is ongoing and that the first lift
has occurred, so it adds a time stamp for the last repetition of the activity, as the
system’s knows that a leg-lifting exercise involves ten repetitions. Goal generation
then produces an intention for the system to utter an encouragement to the patient:

goal(sys,support(sys, john,activity start))

The execution process focuses on this goal and carries out a skill that produces the
utterance “Great start John!”, which it sends to the text interface, making it available
to everyone involved in the meeting.

We lack the space to completely analyze the remaining interaction, but it is im-
portant to note how the system reacts to divergences from the above sequence of
events. Consider the case in which the doctor instead proposes “John lie down” and
in which John counters “No, I will do leg lifts.” As there is no agreed upon goal,
in this case the system does not play the tutorial and instead reminds John of the
doctor’s goal by uttering “John, the doctor wants you to lie down.”

Alternatively, consider a variation in which the interaction starts with the orig-
inal utterances by the doctor and John about leg lifts, followed by the tutorial, but
in which no signal arrives from the motion detector. In this case, after some time
has passed without the expected motion signal, the system generates a goal to utter
“John, you should strap on the motion detector” and executes a skill that communi-
cates this content to the patient.

The different interactions illustrate the system’s ability to respond approprirately
based on its beliefs about the mental state of the users (e.g., whether they adopted the
same goal) and the environmental situation (e.g., that the patient forgot to wear the
motion detector). The dialogue framework supports such reactive responses within
the broader context of the high-level goals it has adopted.
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5 Discussion

Our architecture and the two systems that utilize it take steps towards robust, task-
oriented dialogue systems, but there are some issues that we have not addressed
fully. We remarked earlier that we plan to replace the text-based interfaces with
spoken language interfaces. That move will come with the additional complication
of uncertainty in the meaning of utterances, but we believe our abductive approach
to incremental inference is well situated to handle this issue. We must increase the
scope of explanations to include hypotheses about the meaning of each utterance,
possibly using some measure of uncertainty. We should also introduce the ability to
revise faulty assumptions that arise in dialogue misunderstandings, to which abduc-
tion also lends itself [10]. At the same time, one motivation for developing the archi-
tecture was to support robust cognitive systems. This suggests additional research
goals, including the ability to execute skills in parallel and to handle unfamiliar
tasks through problem solving. We believe that our architecture’s representations
and mechanisms could be adapted to other tasks beyond task-oriented dialogue that
involve social cognition. Examples include settings in which agents provide help
without verbal communication and in which self-interested agents take advantage
of ignorance and deception [3].

The literature reports a number of advanced dialogue managers. RavenClaw [2]
separates from the domain level some domain-independent aspects of dialogue man-
agement, including turn taking, timing, and error handling. In contrast, we have fo-
cused on domain-independent principles at the abstract level of dialogue knowledge.
Moreover, RavenClaw emphasizes generation, while our architecture balances in-
terpretation and generation. Our architecture is similar to Collagen [12] in that both
utilize hierarchical plan structures and construct models of agents’ beliefs during
interpretation and generation, but a key difference is that Collagen does not separate
meta-level from domain knowledge. Also, despite sharing some high-level assump-
tions, our abduction mechanism makes the two frameworks operate quite differently.
We should also mention TRIPS [5], an integrated system that carries out dialogues to
help users generate plans, drawing on knowledge to interpret user input and gener-
ate responses. However, TRIPS was designed for the task of plan creation, while our
architecture can support any collaborative task given suitable domain knowledge.

6 Concluding Remarks

In this paper, we presented an architecture for task-oriented dialogue that integrates
interpretation and generation, along with two implemented systems that build on it.
We discussed results obtained from runs with the meeting support system, demon-
strating how it interprets the current situation and, by combining meta-level and
domain-level knowledge, supports users by participating actively in the dialogue
and issuing commands to actuators.

In addition to integrating processes for dialogue interpretation and generation, the
framework provides a clear separation of meta-level content from domain expertise,
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which we maintain is a desirable feature in a cognitive architecture. These suggest
that it can serve as a solid foundation for future research on both dialogue systems
and other software agents that interact with humans.
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