
Learning Hierarchical Skills

from Observation

Ryutaro Ichise,1,2 Daniel Shapiro,1 and Pat Langley1

1 Computational Learning Laboratory
Center for the Study of Language and Information
Stanford University, Stanford CA 94305-4115 USA

2 National Institute of Informatics, Tokyo 101-8430 Japan

{ichise,dgs,langley}@csli.stanford.edu

Abstract. This paper addresses the problem of learning control skills
from observation. In particular, we show how to infer a hierarchical, reac-
tive program that reproduces and explains the observed actions of other
agents, specifically the elements that are shared across multiple individ-
uals. We infer these programs using a three-stage process that learns flat
unordered rules, combines these rules into a classification hierarchy, and
finally translates this structure into a hierarchical reactive program. The
resulting program is concise and easy to understand, making it possi-
ble to view program induction as a practical technique for knowledge
acquisition.

1 Introduction

Physical agents like humans not only execute complex skills but also improve
their ability over time. The past decade has seen considerable progress on com-
putational methods for learning such skills and control policies from experience.
Much of this research has focused on learning through trial and error explo-
ration, but some has addressed learning by observing behavior of another agent
on the task. In particular, research on behavioral cloning (e.g., Sammut, 1996)
has shown the ability to learn reactive skills through observation on challenging
control problems like flying a plane and driving an automobile.

Although such methods can produce policies that predict accurately the de-
sirable control actions, they ignore the fact that complex human skills often have
a hierarchical organization. This structure makes the skills more understandable
and more transferable to other tasks. In this paper, we present a new approach
to learning reactive skills from observation that addresses the issue of inferring
their hierarchical structure. We start by specifying the learning task, including
the training data and target representation, then present a method for learn-
ing hierarchical skills. After this, we report an experimental evaluation of our
method that examines the accuracy of the learned program and its similarity to
a source program that generated the training cases. In closing, we discuss related
work and directions for future research on this topic.



II

2 The Task of Learning Hierarchical Skills

We define the task of learning skills in terms of its inputs and outputs:

– Given: a trace of agent behavior containing feature-action pairs;

– Find: a program that generates the same actions when presented with the
same features.

Research on behavioral cloning (e.g., Anderson et al., 2000; Sammut, 1996) has
already addressed this task, having developed methods that learn reactive skills
from observation that are both accurate and comprehensible. However, complex
skills can often be decomposed naturally into subproblems, and here we focus on
capturing this hierarchical structure in an effort to produce even more concise
and understandable policies.

We increase the generality of this learned structure by adopting the sep-

aration hypothesis (Shapiro & Langley, 2002), which asserts that differences in
individual behavior are due to the action of distinct preferences over the same
set of skills. That is, we all know how to perform common tasks like driving, but
some prefer more safe, and others the more reckless options. This assumption
separates the task of program acquisition into two parts, where the first is to
acquire the necessary structure of skills, and the second is to resolve a (possibly
numeric) representation of preference that explains individual choices. We ad-
dress the first task here. The separation hypothesis simplifies the task of program
acquisition because it implies that we should learn a non-deterministic mapping
from the observed situation to a feasible set of actions, instead of aiming for a de-
terministic characterization of a single agent’s behavior. The resulting program
will represent fewer distinctions, and thus will be easier to understand.

2.1 Nature of the Training Data

We assume that the learner observes traces of another agent’s behavior as it
executes skills on some control task. As in earlier work on learning skills from
observation, these traces consist of a sequence of environmental situations and
the corresponding agent action. However, since our goal is to recover a non-
deterministic mapping, we consider traces from multiple agents that collectively
exhibit the full range of available options. Moreover, since we are learning reac-
tive skills, we transform the observed sequences into an unordered set of training
cases, one for each situation.

Traditional work in behavioral cloning turns an observational trace into train-
ing cases for supervised learning, treating each possible action as a class value. In
contrast, we find sets of actions that occur in the same environmental situation
and generate training cases that treat each observed action set as a class value.
This lets us employ standard methods for supervised induction to partition sit-
uations into reactive but nondeterministic control policies.



III

2.2 Nature of the Learned Skills

We assume that learned skills are stated in Icarus (Shapiro, 2001), a hierarchi-
cal reactive language for specifying the behavior of physical agents that encodes
contingent mappings from situations to actions. Like other languages of this kind
(Brooks, 1986; Firby, 1989; Georgeff et al., 1985), Icarus interprets programs
in a repetitive sense-think-act loop that lets an agent retrieve a relevant action
even if the world changes from one cycle of the interpreter to the next. Icarus

shares the logical orientation of teleoreactive trees (Nilsson, 1994) and universal
plans (Schoppers, 1987), but adds vocabulary for expressing hierarchical intent
and non-deterministic choice, as well as tools for problem decomposition found
in more general-purpose languages. For example, Icarus supports function call,
Prolog-like parameter passing, pattern matching on facts, and recursion. We
discuss a simple Icarus program in the following section.

2.3 An Icarus Plan for Driving

An Icarus program is a mechanism for finding a goal-relevant reaction to the
situation at hand. The primitive building block, or plan, contains up to three
elements: an objective, a set of requirements (or preconditions), and a set of
alternate means for accomplishing the objective. Each of these can be instanti-
ated by further Icarus plans, creating a logical hierarchy that terminates with
calls to primitive actions or sensors. Icarus evaluates these fields in a situation-
dependent order, beginning with the objective field. If the objective is already
true in the world, evaluation succeeds and nothing further needs to be done. If
the objective is false, the interpreter examines the requirements field to deter-
mine if the preconditions for action have been met. If so, evaluation progresses
to the means field, which contains alternate methods (subplans or primitive ac-
tions) for accomplishing the objective. The means field is the locus of all choice
in Icarus. Given a value function that encodes a user’s preferences, the system
learns to select the alternative that promises the largest expected reward.

Table 1 presents an Icarus plan for freeway driving. The top-level routine,
Drive, contains an ordered set of objectives implemented as further subplans.
Icarus repetitively evaluates this program, starting with its first clause every
execution cycle. The first clause of Drive defines a reaction to an impending
collision. If this context applies, Icarus returns the Slam-on-brakes action for
application in the world. However, if Emergency-brake is not required, evaluation
proceeds to the second clause, which encodes a reaction to trouble ahead, defined
as a car traveling slower than the agent in the agent’s own lane. This subplan
contains multiple options. It lets the agent move one lane to the left, move right,
slow down, or cruise at its current speed. Icarus makes a selection based on the
long-term expected reward of each alternative. The remainder of the program
follows a similar logic as the interpreter considers each clause of Drive in turn. If
a clause returns True, the system advances to the next term. If it returns False,
Drive would exit with False as its value. However, Icarus supports a third
option: a clause can return an action, which becomes the return value of the



IV

Table 1. The Icarus program for freeway driving.

Drive()
:objective
[*not*(Emergency-brake())

*not*(Avoid-trouble-ahead())
Get-to-target-speed()
*not*(Avoid-trouble-behind())
Cruise()]

Emergency-brake()
:requires [Time-to-impact() <= 2]
:means [Slam-on-brakes()]

Avoid-trouble-ahead ()
:requires

[?c = Car-ahead-center()
Velocity() > Velocity(?c)]

:means
[Safe-cruise()
Safe-slow-down()

Safe-change-left()
Safe-change-right()]

Get-to-target-speed()
:objective
[Near(Velocity(), Target-speed())]

:means
[Adjust-speed-if-lane-clear()
Adjust-speed-if-car-in-front()]

Avoid-trouble-behind()
:requires ;;faster car behind

[?c = Car-behind-center()
Velocity(?c) > Velocity()]

:means
[Safe-cruise()

Safe-change-right()]
Safe-cruise()

:requires [Time-to-impact() > 2]
:means [Cruise()]

Safe-slow-down()
:requires [Time-to-impact(-2) > 2]
:means [Slow-down()]

Safe-speed-up()

:requires [Time-to-impact(2) > 2]
:means [Speed-up()]

Safe-change-left()
:requires [Clear-left()]
:means [Change-left()]

Safe-change-right()
:requires [Clear-right()]
:means [Change-right()]

Adjust-speed-if-lane-clear()
:requires [*not*(Car-ahead-center())]

:means
[Slow-down-if-too-fast()
Speed-up-if-too-slow()]

Adjust-speed-if-car-in-front()
:requires

[Car-ahead-center()
*not*(Slow-down-if-too-fast())]

:means
[Speed-up-if-too-slow()
Safe-cruise()

Safe-slow-down()]
Slow-down-if-too-fast()

:requires [Velocity() > Target-speed()]
:means [Safe-slow-down()]

Speed-up-if-too-slow()
:requires
[Velocity() <= Target-speed()]
:means [Safe-speed-up()]

Slam-on-brakes()

:action [match-speed-ahead()]

enclosing plan. For example, Avoid-trouble-behind might return Change-right,
which would become the return value of Drive. Thus, the purpose of an Icarus

program is to find action.

At each successive iteration, Icarus can return an action from an entirely
different portion of Drive. For example, the agent might slam on the brakes on
cycle 1, and speed up in service of Get-to-target-speed (a goal-driven plan) on
cycle 2. However, if Emergency-brake and Avoid-trouble-ahead do not apply, and
the agent is already at its target speed, Icarus might return the Change-right
action in service of Avoid-trouble-behind on cycle 3.

3 A Method for Learning Hierarchical Skills

Now that we have defined the task, we describe our method for learning hierar-
chical skills from behavioral traces. Our approach involves three distinct stages.
The first induces unordered flat rules using a standard supervised learning tech-
nique that induces If-Then rules, each of which predicts an action set for a class
of situations. To this end, we employ CN2 (Clark & Boswell, 1991) to generate



V

Action1

x,y y,Z

Action1Action2 Action2

x z

y

Fig. 1. Operator for promoting conditions.

a set of unordered production rules that determine the target class from at-
tribute values. The second stage creates a classification hierarchy by combining
tests that appear in multiple rules. When viewed as an action generator, this
structure resembles a hierarchical program. The third stage transforms this rep-
resentation into an Icarus program, and simplifies it by taking advantage of
Icarus’ semantics. This section discusses the second and third stages.

3.1 Constructing Hierarchies

The second stage of our approach to program induction generates a classification
hierarchy. Our method operates by promoting conditions that appear in multiple
rules. Consider the two rules:

– If x and y Then Action1
– If y and z Then Action2

Since the condition y appears in the both rules, we can promote it by creating
a more abstract rule that tests the common precondition, using a technique
borrowed from work on grammar induction (e.g., Langley & Stromsten, 2000).
We illustrate this transformation in Figure 1. Here, the labels on arcs denote
conditional tests, and the leaf nodes denote actions. The black circles indicate
choice points, where one (or more) of the subsequent tests apply. These structures
are interpreted from the top downwards. For example, the right side of Figure 1
classifies the current situation first by testing y, and then, if y holds, by testing
x and z (in parallel) to determine which action or actions apply. This results in
a more efficient classification process; y is only tested once and, if it does not
hold, there is no reason to test x or z. This structure is similar to the decision
trees output by C4.5, but more general in that it allows non-exclusive choice.

In addition to promoting conditions, we can promote actions within a clas-
sification hierarchy. Figure 2 provides a simple example, where Action2 occurs
at all leaf nodes within a given subtree. If the system is guaranteed to reach at
least one of the leaf nodes3 we can associate Action2 with the root node of the
subtree. We represent such nodes with a hollow circle. This simplification applies
even if the leaf nodes are at an arbitrary depth beneath the root of the subtree.

3 Here we mean that the tests in the subtree form a collectively exhaustive set.



VI

Action1 Action3

x

Action1
Action2

Action2
Action3

x x

Action2

x

Fig. 2. Operator for promoting actions.

Condition promotion transforms the flat rules learned by CN2 into a classifi-
cation hierarchy. However, since there are many possible ways to combine rules
by promoting conditions, we have an opportunity to shape the final classification
hierarchy by defining rule-selection heuristics. (Note that this degree of control
would not be available if we had induced decision trees instead of rules.) The
key idea is to merge rules with similar actions. In particular, we identify three
heuristics that tend to combine rules with similar purposes and isolate rules
that represent special cases. The resulting trees transform into understandable
programs.

1. Select rules with the same action or same set of actions.

2. Select rules with subset relations among the actions.

3. Select rules with the same conditions.

Our algorithm considers these heuristics in priority order. If two rules select
the same action class, they are the highest priority candidates for condition
promotion. The operation will only be successful, of course, if the rules share
conditions. If more than two rules select the same action class, the ones that share
the largest number of conditions will be combined. The second heuristic applies
if no two rules select the same action class. In this case, the algorithm looks for
rules whose action sets bear a subset relation to one another, such as “Speed-up”
and “Speed-up, Change-right”. If a single rule enters into many such pairings,
the system takes the ones with the smallest number of actions on the theory
that these rules express the most cohesive intent. Ties are broken by a similarity
metric that maximizes the number of shared and thus promotable conditions.
Finally, if no action sets bear subset relations, the system picks rules that share
the largest number of conditions. The combination of any two rules yields a
subtree with shared conditions on its top-level arc, and these conditions can enter
into further promotion operations.4 The remaining conditions cannot be merged
with any other rules. This process of rule selection and combination continues
to exhaustion, merging top-level conditions to build multi-layered subtrees.

A simple example may help to clarify this algorithm. Consider the following
three rules (whose abbreviations are defined in Table 2):

4 For the purpose of the rule-selection heuristics, the action set of a subtree is the
union of the action sets in its leaf nodes, while the most similar subtrees share the
largest number of top-level conditions.



VII

IF TTIA < 52.18

AND TTIA > 1.82

AND CLR = True

AND CLL = True

THEN Action =

CHR, CHL, CRU, SLO

IF TTIA < 52.18

AND TTIA > 1.82

AND CLR = True

AND CLL = False

THEN Action =

CHR, CRU, SLO

IF TTIA < 52.18

AND TTIA > 1.82

AND CLR = False

AND CLL = False

THEN Action =

CRU, SLO

Although no two rules select identical actions sets, all three action sets bear
subset relations. In this case, the algorithm will select the last two rules because
their action sets are the smallest, and promote three conditions to obtain a new
shared structure. Two of those conditions can be combined with the rule for
CHR,CHL,CRU,SLO, yielding a three level subtree representing all three rules.

When the process of condition promotion terminates, we add a top-level node
to represent the choice among subtrees. Then, we simplify the structure using the
action promotion rule shown in Figure 2. This produces the rightmost subtree
of the classification structure in Figure 3.

3.2 Constructing the Icarus Program

We can simplify hierarchical classification structures by translating them into
Icarus and taking advantage of its representational power. The key idea is to
recognize that the first phases of program induction always produce a mutually
exclusive classification hierarchy, and thus that the branches can be ordered
without loss of generality.

Consider the fourth and fifth subtrees of the top node in Figure 3. These
represent a rule to avoid collisions, and the responses to a slower car in front
(as discussed above). If Icarus evaluates these in order, it can only reach the
fifth branch if the fourth fails to return an action, meaning there is no imminent
collision (TTIA > 1.82). We can use this knowledge to simplify the logical tests
in the fifth subtree, producing the Icarus subplans labeled R1, R2, R21 and
R22 in Table 3. This completes the process of inducing a hierarchical control
program from observational traces.

4 An Experiment in Hierarchical Behavior Cloning

Now that we have discussed our method for inducing hierarchical programs,
we turn to an experiment that will let us evaluate the approach in a simple
driving domain. In specific, we consider the problem of program recovery: we
use the Icarus program of Table 1 to generate trace data, and employ our
induction method to recover a second Icarus program that explains these data.
We evaluate the results in terms of the accuracy and efficiency of the recovered
program, as well as its conceptual similarity to the source program. We begin by
describing the source data, and its transformation into the destination program.

4.1 Data on Driving Behavior

We used the Icarus program in Table 1 to generate trace data. Since our goal
was to recover the structure of a shared driving skill, we needed data from



VIII

Table 2. Notation used in example rules and hierarchies.

Actions Conditions

Abbreviation Meaning Abbreviation Meaning

CRU Cruise CAC Car Ahead Center
SLO Slow Down CBC Car Behind Center
SPE Speed Up CLR Clear Right
MAT Match Speed Ahead CLL Clear Left
CHR Change Right TTIA Time To Impact Ahead
CHL Change Left TTIB Time To Impact Behind

VEL Velocity

multiple drivers whose preferences would collectively span all of the feasible
behavior. Instead of creating these agents, we took the simpler approach of
directly exercising every control path in the source program, while recording the
feature set and the action set available at each time step. This produced a list
of situation-action tuples that included every possible action response.

We enumerated five values of in-lane separation (both to the car ahead and
behind), five values of velocity for each of the three in-lane cars, and the status
of the adjacent lane (whether it was clear or not clear). We chose the partic-
ular distance and velocity numbers to produce True and False values for the
relevant predicates in the driving program (e.g., time to impact ahead, velocity
relative to target speed). This procedure also created multiple occurrences of
many situation-action tuples (i.e., the mapping from distance and velocity onto
time to impact was many-one). The resulting data had nine attributes. Four of
these were Boolean, representing the presence or absence of a car in front/back,
and whether the lanes to the right or left of the agent are clear. The rest were nu-
merical attributes. Two of these represented time to impact with the car ahead
or behind, two encoded relative velocity ahead or behind, and the last measured
the agent’s own velocity.

Our formulation of the driving task assumes six primitive actions. We pre-
processed the data to identify sets of these actions that occurred under the same
situation. We obtained ten such sets, each containing one to four primitive ac-
tions. These sets define a mutually exclusive and collectively exhaustive set of
classes for use in program induction.

4.2 Transformation into an Icarus Program

We employed CN2 to transform the behavioral trace obtained from the Icarus

source program into a set of flat rules, and further transformed that output into
a hierarchical classification structure using the condition and action promotion
rules of Section 3.1. This produced the tree shown in Figure 3.

We simplified this tree by transforming it into an Icarus program via a a
manual process (we expect to automate this in the future). We numbered the
branches from left to right and considered them in the order 4,5,3,1,2. This



IX

CLR=T

CHR

VEL>67.5

CAC=F

56.5>VEL

1.82>TTIA

CAC=T

45.5>VEL

TTIA>52.18

67.5>VEL>56.5 TTIA>52.18

52.18>TTIA>1.82

56.5>VEL

SLO CHL

MATSPE

SLO
CRU

CRU
CRUCRU
SLO
SPE

52.18>TTIB

CRU
SLO
SPE

CLR=TCLL=T

CHR

Fig. 3. The classification hierarchy obtained by our method.

ordering simplified the required conditions. Taken as a whole, these transforma-
tions recovered the Icarus program shown in Table 3, completing the task of
inducing a hierarchical program from observations.

4.3 Experimental Evaluation

We evaluated our learning method in several ways and at several stages in the
transformation process. First, we examined the accuracy of the flat rules induced
by CN2 to determine how much of the original behavior we were able to recover.
(Since all of the subsequent processing steps preserve information, this measures
the accuracy of the recovered program.) In addition, we compared the efficiency
of the recovered Icarus program relative to the flat rules produced by CN2.
Finally, we evaluated the structure of the learned Icarus program in a more
subjective sense, by comparing it against the original Icarus program that
generated the data.

We measured the accuracy of the rules induced by CN2 by conducting a 10-
fold cross validation. Since the trace data contained circa 4800 situation, action-
set tuples, we employed ten training sets, each with about 4300 tuples. For each
of these training sets, our method induced a program that had 100% accuracy on
the corresponding test set. Moreover, even though the rules induced by the first
stage were slightly different across the training runs, the resulting classification
hierarchies were identical to the tree in Figure 3. Thus, our heuristics for rule
combination regularized the representation.

We also compared the number of conditions that must be evaluated to select
action in the induced flat rules and in the recovered Icarus program. This



X

Table 3. The Icarus program induced by our method.

Drive ()
:requires [NOT(R1)

NOT(R2)

NOT(R3)
NOT(R4)]

R1 ()
:requires [TTIA < 1.82]

:means [MAT]

R2 ()
:requires [TTIA < 52.18]
:means [SLO CRU R21 R22]

R21 ()
:requires [CLL = True]
:means [CHL]

R22 ()
:requires [CLR = True]
:means [CHR]

R3 ()
:requires [VEL < 56.5]
:means [SPE R31]

R31 ()
:requires [CAC = True]
:means [SLO CRU]

R4 ()
:requires [NOT(R41)]
:means [CRU R42]

R41 ()
:requires [VEL > 67.5]
:means [SLO]

R42 ()

:requires [CLR = True
TTIB < 52.18]

:means [CHR]

provides a measure of the computational efficiency of the two representations.
The flat rules required an average of 7361 evaluations to process the training
data, while the learned Icarus program employed 2216. Thus, the hierarchical
representation requires only 30% of the effort.

When we compare the learned Icarus program in Table 3 with the original
program in Table 1 several interesting features emerge. First, the learned pro-
gram is simpler. It employs 10 Icarus functions, whereas the original program
required 14. This was quite surprising, especially since the original code was writ-
ten by an expert Icarus programmer. Next, the learned program captures much
of the natural structure of the driving task; the top-level routines call roughly
the same number of functions, and half of those implement identical reactions.
Specifically, R1 in Table 3 corresponds to Emergency-brake in Table 1, while
R2 represents Avoid-trouble-ahead using a simpler gating condition. Similarly,
R4 captures the behavior of Avoid-trouble-behind, although it adds the Slow-
down operation found in Get-to-target-speed. R3 represents the remainder of
Get-to-target-speed, absent the Slow-down action. The system repackaged these
responses in a slightly more efficient way. The only feature missing from the
learned program is the idea that maintaining target speed is an objective. We
hope to address this issue in the future, as it raises the interesting problem of
inferring the teleological structure of plans from observation.

5 Related Work on Control Learning

We have already mentioned in passing some related work on learning control
policies, but the previous research on this topic deserves more detailed discus-
sion. The largest body of work focuses on learning from delayed external rewards.
Some methods (e.g., Moriarty et al., 1999) carry out direct search through the



XI

space of policies, whereas others (e.g., Kaelbling et al., 1996) estimate value
functions for state-action pairs. Research in both paradigms emphasizes explo-
ration and learning from trial and error, whereas our approach addresses learning
from observed behaviors of another agent. However, the nondeterministic poli-
cies acquired in this fashion can be used to constrain and speed learning from
delayed reward, as we have shown elsewhere (Shapiro et al., 2001).

Another framework learns control policies from observed behaviors, but draws
heavily on domain knowledge to interpret these traces. This paradigm includes
some, but not all, approaches to explanation-based learning (e.g., Segre, 1987),
learning apprentices (e.g., Mitchell et al., 1985), and programming by demon-
stration (e.g., Cypher, 1993). The method we have reported for learning from
observation relies on less background knowledge than these techniques, and also
acquires reactive policies, which are not typically addressed by these paradigms.

Our approach is most closely related to a third framework, known as behav-

ioral cloning, that also observes another agent’s behavior, transforms traces into
supervised training cases, and induces reactive policies. This approach typically
casts learned knowledge as decision trees or logical rules (e.g., Sammut, 1996;
Urbancic & Bratko, 1994), but other encodings are possible (Anderson et al.,
2000; Pomerleau, 1991). In fact, our method’s first stage takes exactly this ap-
proach, but the second stage borrows ideas from work on grammar induction
(e.g., Langley & Stromsten, 2000) to develop simpler and more structured rep-
resentations of its learned skills.

6 Concluding Remarks

This paper has shown that it is possible to learn an accurate and well-structured
program from a trace of an agent’s behavior. Our approach extends behavioral
cloning techniques by inducing simpler control programs with hierarchical struc-
ture that makes them correspondingly easy for a person understand. Moreover,
our emphasis on learning the shared components of skills holds promise for in-
creased generality of the resulting programs.

Our technique for learning hierarchical structures employed several heuristics
that provided a substantial source of inductive power. In particular, the attempt
to combine rules for similar action sets tended to group rules by purpose, while
the operation of promoting conditions tended to isolate special cases. Both tech-
niques led to simpler control programs and, presumably, more understandable
encodings of reactive policies.

We hope to develop these ideas further in future work. For example, we will
address the problem of inferring Icarus objective clauses, which is equivalent
to learning teleological structure from observed behavior. We also plan to con-
duct experiments in other problem domains, starting with traces obtained from
simulations and/or human behavior. Finally, we intend to automate the process
of transforming classification hierarchies into Icarus programs. This will let us
search for criteria that generate the most aesthetic representation of skills.



XII

References

Anderson, C., Draper, B., & Peterson, D. (2000). Behavioral cloning of student pi-
lots with modular neural networks. Proceedings of the Seventeenth International

Conference on Machine Learning (pp. 25-32). Stanford: Morgan Kaufmann.
Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal

of Robotics and Automation, 2, 1.
Clark, P., Boswell, R. (1991). Rule induction with CN2: Some recent improvements.

Proceedings of the European Working Session on Learning : Machine Learning,
LNAI, 482, 151–163.

Cypher, A. (Ed.). (1993). Watch what I do: Programming by demonstration . Cam-
bridge, MA: MIT Press.

Firby, J. (1989). Adaptive execution in complex dynamic worlds. PhD Thesis, Depart-
ment of Computer Science, Yale University, New Haven, CT.

Georgeff, M., Lansky, A., & Bessiere, P. (1985). A procedural logic. Proceedings of the

Ninth International Joint Conference on Artificial Intelligence. Morgan Kaufmann.
Kaelbling, L. P., Littman, L. M., & Moore, A. W. (1996). Reinforcement learning: A

survey. Journal of Artificial Intelligence Research , 4 , 237–285.
Langley, P., & Stromsten, S. (2000). Learning context-free grammars with a simplicity

bias. Proceedings of the Eleventh European Conference on Machine Learning (pp.
220–228). Barcelona: Springer-Verlag.

Mitchell, T. M., Mahadevan, S., & Steinberg, L. (1985). Leap: A learning apprentice for
VLSI design. Proceedings of the Ninth International Joint Conference on Artificial

Intelligence , (pp. 573-580). Los Angeles, CA: Morgan Kaufmann.
Moriarty, D. E., Schultz, A. C., & Grefenstette, J. J. (1999). Evolutionary algorithms

for reinforcement learning. Journal of Artificial Intelligence Research , 11 , 241–276.
Nilsson, N. (1994). Teleoreactive programs for agent control. Journal of Artificial In-

telligence Research, 1, 139–158.
Pomerleau, D. (1991). Rapidly adapting artificial neural networks for autonomous nav-

igation. Advances in Neural Information Processing Systems 3 (pp. 429–435). San
Francisco: Morgan Kaufmann.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.
Sammut, C. (1996). Automatic construction of reactive control systems using symbolic

machine learning. Knowledge Engineering Review , 11 , 27–42.
Schoppers, M. (1987). Universal plans for reactive robots in unpredictable environ-

ments. Proceedings of the Tenth International Joint Conference on Artificial Intel-

ligence (pp. 1039-1046). Morgan Kaufmann.
Segre, A. (1987). A learning apprentice system for mechanical assembly. Proceedings

of the Third IEEE Conference on AI for Applications (pp. 112–117).
Shapiro, D., Langley, P., & Shachter, R. (2001). Using background knowledge to speed

reinforcement learning in physical agents. Proceedings of the Fifth International

Conference on Autonomous Agents (pp. 254–261). Montreal: ACM Press.
Shapiro, D. (2001). Value-driven agents. PhD thesis, Department of Management Sci-

ence and Engineering, Stanford University, Stanford, CA.
Shapiro, D.,& Langley, P. (2002). Separating skills from preference: using learning

to program by reward. Proceedings of the Nineteenth International Conference on

Machine Learning (pp. 570–577). Sydney: Morgan Kaufmann.
Urbancic, T., & Bratko, I. (1994). Reconstructing human skill with machine learning.

Proceedings of the Eleventh European Conference on Artificial Intelligence (pp.
498–502). Amsterdam: John Wiley.


