
1

Separating Skills from Preference:
Using Learning to Program by Reward

Daniel Shapiro DGS@STANFORD.EDU
Pat Langley LANGLEY@ISLE.ORG
Institute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, CA , 94306 USA

Abstract

Developers of artificial agents commonly take
the view that we can only specify agent behavior
via the expensive process of implementing new
skills. This paper offers an alternative expressed
by the separation hypothesis: that the behavioral
differences among individuals are due to the
action of distinct preferences over the same set
of skills. We test this hypothesis in a simulated
automotive domain by using a reinforcement
learning algorithm to induce vehicle control
policies, given a structured skill for driving that
contains options, and a user-supplied reward
function. We show that qualitatively distinct
reward functions produce agents with
qualitatively distinct behavior over the same set
of skills. This leads to a new development
metaphor we call Ôprogramming by rewardÕ.

1. Motivation and Background

In many domains, humans exhibit complex physical
behaviors that let them accomplish sophisticated tasks.
Researchers have explored two main approaches to
learning such behaviors, each associated with a different
class of representational formalisms. One paradigm
encodes control knowledge as rules or similar structures
(e.g., Laird & Rosenbloom, 1990; Sammut, 1996) that
state conditions under which to execute actions. An
alternative framework instead specifies some function that
maps state-action pairs onto a numeric utility (e.g.,
Watkins & Dayan, 1992), which is then used to select
among actions.

Both approaches have repeatedly demonstrated their
ability to learn useful control policies across a broad
range of domains, yet each lends itself most naturally to
different aspects of intelligent behavior. This idea is best
illustrated by work on game playing, where developers
regularly use rules or other logical constraints to specify
which moves are legal but invoke numeric evaluation
functions to select among them. We claim that a similar
division of labor will prove useful in research on policies

for reactive control, including learning such policies from
agent experience.

In this paper, we assume that an agent already has access
to a set of logical rules that constrain the allowable
actions, but that it must learn the value of its remaining
options from delayed reward. Elsewhere (Shapiro et al.,
2001), we have shown that this use of background
knowledge can greatly speed the process of learning
control policies. Here we focus on a different claim: that
providing a learning agent with different reward signals
can lead to a great variety of behaviors that still share the
same overall structure. This approach to learning — which
we call programming by reward -- should prove useful in
constructing simulated agents for computer games, in
supporting personalized services that must operate within
certain constraints, and many other tasks.

In the following pages, we report one instance of this
general framework, which we have cast in an architecture
for physical agents called Icarus. We begin by describing
the architecture’s logical formalism for encoding
hierarchical skills, taking examples from the task of
driving an automobile. We then turn to the value
functions that Icarus uses to select among applicable skills
and its algorithm for using delayed rewards to update
these functions. After this, we present experimental
studies designed to test our hypothesis that providing such
a system with different rewards can produce distinctive
yet still viable policies. Finally, we examine some other
approaches to learning complex skills and suggest
directions for additional research on this topic.

2. The Icarus Language

Icarus is a language for specifying the behavior of
artificial agents that learn. Its structure is dually
motivated by the desire to build practical agent
applications and the desire to support policy learning in a
computationally efficient way. We responded to the first
goal by providing Icarus with powerful representations.
However, the desire for rapid learning suggests a simpler
format that offers a clear mapping into the Markov
decision process (MDP) model, since MDPs provide a
conceptual framework for developing learning algorithms,

2

and mathematical properties useful for convergence
proofs. We resolved this tension by casting Icarus as a
reactive computing language.

2.1 A Reactive Formalism

Reactive languages are tools for specifying highly
contingent agent behavior. They supply a representation
for expressing plans, together with an interpreter for
evaluating plans that employs a repetitive sense-think-act
loop. This repetition provides adaptive response; it lets an
agent retrieve a relevant action even if the world changes
from one cycle of the interpreter to the next.

Reactive languages offer a spectrum of vocabularies for
expressing plans. This includes combinational logic
(Agre, 1988), directed graphs (Georgeff, et al. 1985),
prioritized procedures (Brooks, 1986), ordered production
rules (Nilsson, 1994) and goal structures with
preconditions (Schoppers, 1987). Reactive languages also
support different degrees of adaptive response. Some
embed reaction in an overall schema for sequential
behavior, while extremely reactive languages make no
commitment to control flow (because their interpreters let
the world change from one state to any other recognized
by the plan in exactly one time step). This format is very
similar in spirit to an MDP, since both employ an iterated
situation-response loop and both allow arbitrary
transitions with no memory of past state.

Icarus is an instance of an extremely reactive language. It
shares the logical orientation of teleoreactive trees
(Nilsson, 1994) and universal plans (Schoppers, 1987),
but adds vocabulary for expressing hierarchical intent, as
well as tools for problem decomposition found in more
general-purpose languages. For example, Icarus supports
function call, Prolog-like parameter passing, pattern
matching on facts, and recursion.

An Icarus program contains up to three elements: an
objective, a set of requirements (or preconditions), and a
set of alternate means (or methods for achieving
objectives), as illustrated in Figure 1. Each of these can
be instantiated by further Icarus plans, creating a logical
hierarchy that terminates with calls to primitive actions or
sensors. Icarus evaluates these fields in a situation-
dependent order, beginning with the objective field. If
the objective is already true in the world, evaluation
succeeds and nothing further needs to be done. If the

objective is false, the interpreter examines the
requirements field to determine if the preconditions for
action have been met. If so, evaluation progresses to the
means field, which contains alternate methods for
accomplishing the objective (primitive actions or
subplans). The means field is the locus of all value-based
choice in Icarus, since the objectives and requirements
contain no options. In order to support this choice, the
interpreter associates a value estimate with each Icarus
plan. Icarus will learn to select the action or subplan that
promises the largest expected reward.

Icarus offers several unusual features that increase its
representational power: it allows the execution of a
process to be a goal, and it embeds a sequence primitive
within a reactive interpreter (where reaction within a
sequential plan is more common). In addition, it offers
control over plan expansion; Icarus can commit to a
subplan before investigating it, or it can investigate
subplans and choose among the actions returned. See
Shapiro (2001) for a more complete description of the
language.

2.2 An Icarus Plan for Driving

Table 1 illustrates the top-level elements of an Icarus plan
for freeway driving. It contains an ordered set of
objectives implemented as further subplans. Icarus
repetitively processes this plan, starting with its first
statement every execution cycle. The interpreter employs
a three-valued semantics, where every statement in the
language evaluates to one of True, False, or an Action.
ÔTrueÕ means the statement was true in the world, ÔFalseÕ
means the plan did not apply, and an ÔActionÕ return
identifies a piece of code for controlling actuators that
addresses the objectives of the plan.

The first clause in Table 1 defines a reaction to an
impending collision. If this context applies, Icarus returns
the slam-on-the-brakes action for application in the world.
If emergency braking is not required, evaluation proceeds
to the second clause, which specifies a plan for reacting to
trouble ahead, defined as a car travelling slower than the
agent in the agentÕs own lane. This subplan contains
options, as shown in Table 2. Here, the agent can move
one lane to the left, move right, slow down, or cruise at its
current speed and lane, but the plan does not include the
option to speed up. Icarus makes a selection based on the
long-term expected reward of each alternative.

Requirements

Objectives

Means

Means
World

Act

Sense

Figure 1. The structure of Icarus plans.

Table 1. The top level of an Icarus freeway-driving plan.

Drive ()

 :objective

 [*not* (Emergency-brake())

 * not* (Avoid-trouble-ahead())

 Get-to-target-speed()

 * not* (Avoid-trouble-behind())

 Cruise()]

3

If there is no imminent collision or trouble in front, Icarus
examines the third clause of Table 1, which invokes a
goal-driven subplan for bringing the agent to its target
speed. This subplan causes the agent to speed up if it is
traveling too slow or slow down if it is moving too fast,
but it evaluates to ÔTrueÕ if the agent is currently traveling
at its target speed. (Note that the fields in an Icarus plan
contain default values: False for the :objective, True for
:requires, and False for the :means field.)

If the first three clauses in Table 1 are True, Icarus
examines the fourth clause, a subplan for reacting to a
faster car behind. This subplan (not shown) also contains
options; it lets the agent move over or simply ignore the
vehicle behind and cruise. Finally, if there is no cause to
emergency brake, no trouble ahead, the agent is at its
target speed, and there is no trouble behind, the fifth
clause always returns an action. This causes the agent to
cruise in its current lane at its current speed.

Since Icarus plans contain choice points, the interpreter
needs a method of selecting the right option to pursue. In
particular, we would like to know the total benefit (as
opposed to the immediate return) for making a given
choice on the current time step, so that the agent can
maximize its prospective future reward. Icarus provides
this capability by associating a value estimate with each
Icarus plan. This number represents the expected future
discounted reward stream for choosing a primitive action
or subplan on the current execution cycle and following
the policy (being learned) thereafter. Icarus computes this
expected value using a linear function of current
observations. For example, Avoid-trouble-ahead (Table
2) defines several parameters solely for the purpose of
value estimation; the data are not required to execute any
of the routines in its :means field.

The estimation architecture addresses an interesting
tension in information needs. On one hand, the value of
a plan clearly depends upon its context; the future of
ÔdecelerateÕ is very different if the car in front is close or
far. On the other hand, the cardinal rule of good
programming is "hide information". We should not force

Icarus programmers to define subplans with a suite of
value-laden parameters that are irrelevant to performing
the task at hand. Our solution is to inherit context-setting
parameters down the calling tree. Thus, Avoid-trouble-
ahead measures the distance to the car in front, and Icarus
implicitly passes that parameter to the decelerate action
several levels deeper in the calling tree. The programmer
writes Icarus code in the usual fashion, without concern
for this implicit data.

2.3 The SHARSHA Algorithm

SHARSHA is a reinforcement learning method mated to
Icarus plans. It is a model-free, on-line technique that
determines an optimal control policy by exploring a
single, infinitely long trajectory of states and actions.
SHARSHA (for State Hierarchy, Action, Reward, State
Hierarchy, Action) adds hierarchical intent to the well-
known SARSA algorithm (for State, Action, Reward,
State, Action).

SARSA operates on state-action pairs. It learns an
estimate for the value of taking a given action in a given
state by sampling its future trajectory. SARSA repeats
the following steps: (1) select and apply an action in the
current state; (2) measure the in-period reward; (3)
observe the subsequent state and commit to an action in
that state; and (4) update the estimate for the starting
state-action pair, using its current value, the current
reward, and the estimate associated with the destination
pair. In other words, SARSA bootstraps; it updates value
estimates with other estimates, grounding the process in a
real reward signal. Singh, et al. (in press) have shown that
SARSA converges to the optimal policy and the correct
values for the future discounted reward stream. The proof
imposed common Markov assumptions, required an exact
(tabular) representation of the true reward function, and
allowed a range of action selection policies that
guaranteed sufficient exploration of apparently sub-
optimal choices.

SHARSHA adapts SARSA to plans with a hierarchical
model of intent. In particular, it operates on stacks of
state-action pairs, where each pair corresponds to an
Icarus function (encoding a plan to pursue a course of
action in a given situation), as depicted in Figure 2. For
example, at time 1 an Icarus agent for piloting a car might
accelerate to reach its target speed in order to drive, while
at time 2 it might brake in order to avoid trouble as part of
the same driving skill. SHARSHA employs the SARSA
inner loop with slight modifications: where SARSA
observes the current state, SHARSHA observes the
calling hierarchy, and where SARSA updates the current
state, SHARSHA updates the estimates for each function
in the calling stack. The second difference is that
SHARSHAÕs update operator inputs the current estimate,
the reward signal, and the estimate associated with the
primitive action on the next execution cycle. In principle,
this primitive carries the best estimate because it utilizes

Table 2. An Icarus plan with alternate subplans.

Avoid-trouble-ahead ()

 :requires

 [bind (?c, car-ahead-center())

 velocity() > velocity(?c)

 bind (? tti, time-to-impact())

 bind (?rd, distance-ahead())

 bind (? rt, target-speed() – velocity())

 bind (?art, abs(? rt))]

 :means

 [safe-cruise(?tti, ?rd, ?art)

 safe-slow-down (? tti, ?rd, ? rt)

 move-left (?art)

 move-right (?art)]

4

the more informed picture of world state built while
evaluating the Icarus program.

Our implementation of SHARSHA includes several
additional features. It employs eligibility lists to speed
learning, it normalizes sensor values at run-time (since the
update rule can otherwise diverge), it supports multiple
exploration policies, and it employs linear value
approximation functions in place of tabular forms.
SHARSHA learns the coefficients of these linear
mappings from delayed reward. We have proven
SHARSHAÕs converge properties under a common set of
Markov assumptions (Shapiro, 2001).

3. An Experiment with Programming by Reward

Now that we have introduced the Icarus architecture, we
turn to an experiment on its advantages for agent design.
In particular, we would like to know if we can employ
programming by reward to build interesting agents. Here,
an engineer implements a base of skills that contain
options, and does this once per application domain, while
users create individual agents by defining distinct reward
functions that serve as the target of learning.

The key question is whether shared skills possess enough
flexibility to support this programming model. We
believe the answer is yes, and we codify that conjecture in
the separation hypothesis: that the behavioral differences
among individuals performing common physical tasks are
due to the action of distinct preferences over the same set
of skills. For example, we all know how to drive, but
some of us are passive and others more aggressive
drivers. If the hypothesis holds, skills and preferences
are loosely coupled and we can develop agents via
programming by reward. If it is false, skills and reward
are tightly coupled, and a change to one requires a change
in the other. Any method that considers them separable is
doomed to failure.

We investigate the separation hypothesis through a simple
qualitative experiment. We define a set of reward
functions, use them to train the Icarus skill outlined in
Tables 1 and 2, and then compute and compare various
behavioral measures. We begin by discussing agent-held
reward functions.

3.1 Agent-held Reward Functions

In order to test the model of programming by reward, we
defined a set of qualitatively different reward functions.
All of them are linear in their feature values, and Table 3
associates their features with mnemonic names. The
airport driver is solely motivated by the desire to get to
the airport on time. It becomes less happy as its velocity
deviates from target speed. The safe driver wants to
avoid collisions. Its reward function penalizes small
times to impact with cars in front and cars behind. The
shorter the time to impact, the larger the penalty, with
times greater than 100 seconds having no reward. The
goldfish driver has an imaginary fishbowl as luggage, and
does not want maneuvers to upend the fish. Alternatively,
we can think of the goldfish driver as a bit queasy; its
reward function penalizes all forms of maneuver. The
reckless teenager is out for thrills; it garners reward for
near misses, and also cares about maintaining its cruising
speed. The crowd lover and the crowd hater desire the
expected things; their reward increases (or decreases)
with the number of surrounding cars. Note that the
rewards are calculated once every execution cycle, and
the learning system seeks to acquire the greatest reward
stream over time.

3.2 A Profile of Learned Behavior

We use each of the above reward functions to develop
agent personalities by employing them as the target of
policy learning. We conduct ten 32,000-iteration training
runs for each driver, and the following figures discuss
averages computed over the final 20,000 iterations of
each run. In all cases, we initialize the driverÕs velocity to
a random number between zero and its target speed (62
mph), and all of its value-estimation functions to zero.
Figure 3 focuses on behavioral measures, using the safe

Time to
impact
ahead

Time to
impact
behind

Deviation
from
target
speed

Slowing
down

Speeding
up

Changing
lanes

Nearby
Cars

Airport
driver

�

Safe
driver + +
Goldfish
driver

� � �

Reckless
teenager

� � �

Crowd
Lover +
Crowd
Hater

�

Table 3. Definitions for agent-held reward functions.

R(t)
State, action State, action

Drive

Get to target

Accelerate

Drive

Avoid trouble

Brake

SARSA

SHARSHA
R(t)

Figure 2. A comparison of SARSA and SHARSHA.

5

driverÕs score as the unit quantity. We analyze the
maximum and minimum values in each category.

The first measure is the absolute value of the agentÕs
difference from its target speed. The fact that the airport
driver has the lowest score is not surprising, since its
reward function directly penalizes non-zero values.
However, the safe driver shows the highest difference
from target speed in the chart. It is not motivated
(positively or negatively) by this quantity, but apparently,
it readily adjusts its velocity to avoid potential collisions
(i.e., short times to impact).

The safe driver also shows the largest following distance.
This makes intuitive sense, since safe drivers know that
tailgating produces potential collisions. (If the car in front
slows down, the safe driver inherits a significant penalty.)
In contrast, the goldfish driver has the shortest following
distance (although it is close to the airport driverÕs). We
explain this observation by a cruise control effect: drivers
who resist velocity changes will tend to creep up on the
car in front. Both the airport and goldfish drivers contain
this bias. Note that none of these agents assign direct
value to following distance in their reward functions.

The airport driver displays the highest number of lane
changes. This makes sense if it is maneuvering to
maintain its target speed. The goldfish driver shows the
fewest, as it is centrally motivated not to make such
changes. The speed change results are similar: the airport
driver is directly biased against deviating from target
speed, while the safe driver freely adjusts its speed to
avoid potential impacts.

Finally, the goldfish driver performs the fewest cutoff
actions (defined as a lane change in front of a faster
vehicle), as it is motivated to avoid all maneuvers. In
contrast, the reckless driver actively seeks potential
collisions, as they contribute positive terms to its reward.

Note that the driving program prevents the reckless
teenager from simply colliding with the car in front; its
opportunity to learn is confined to an allowable realm.
Said differently, the agentÕs skills ensure reasonable
behavior. Its reward function is irrelevant whenever the
behavior is determined, and relevant only when choice is
allowed. This design frees us to construct reward
functions in an unconstrained way.

3.3 Learned Lane Preferences

Figure 4 illustrates an emergent property of programming
by reward. We plot the agentÕs occupancy in the different
freeway lanes, and note that the crowd lover evolves a
slight preference for the middle lane, while the crowd
hater generates a strong preference for the right hand lane.
These preferences were never encoded in the reward
functions, although the results make intuitive sense. A
car in the center lane has the potential to encounter up to
six adjacent vehicles (good for a crowd lover), while a car
in the right or left lane can have a maximum of four
neighbors. While it is clear that the crowd-hater would
avoid the center lane, it is unclear why it preferred the
right lane to the left. The (fixed) control policies of the
cars constituting the freeway traffic do act to sort vehicles
into lanes by speed. Perhaps there is a smaller difference
between the average speed in the right and center lanes
than between the left and center lanes. If so, the crowd
hater will encounter fewer cars per unit time if it
gravitates to the right.

3.4 Driver Behavior Across Two Domains

It is clear that we can generate distinct behavior via
programming by reward, but we would also like to know
if that behavior is in some sense robust to environmental
change. We investigate this question by training the same
agents in a high, vs a low density traffic scenaior. Figure

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

DIFFERENCE FROM
TARGET SPEED

FOLLOWING
DISTANCE

LANE CHANGE SPEED CHANGE CUTOFF

F
E

A
T

U
R

E
 V

A
LU

E
 R

E
LA

T
IV

E
 T

O
 S

A
F

E
 D

R
IV

E
R

Airport driver

Safe driver

Goldfish driver

Reckless driver

Figure 3. A profile of learned behaviors in a low-
density traffic environment.

0

0.1

0.2

0.3

0.4

0.5

0.6

Left lane Middle lane Right lane

P
e
rc

e
n

ta
g

e
 o

c
c
u

p
a
n

c
y

Crowd-loving driver

Crowd-hating driver

Figure 4. Lane preferences learned by the crowd-
loving and crowd-hating drivers.

6

5 provides the results. Here, we take the performance of
the safe driver in low-density traffic as the unit quantity
so that we can compare behavior both within and across
domains.

Our first observation is that the absolute magnitudes of
the metrics differ as we move between scenarios. It is
generally harder to maintain target speed in high-density
traffic, following distances shrink, it becomes more
difficult to change lanes, and the agents have to adjust
their speed more often in order to respond to other traffic.
These changes make sense, as they are largely forced
upon the agents by increased traffic density.

A more striking observation is that the behavioral profiles
are beautifully preserved across domains. Although the
number of instances of any given behavior changes, the
shapes of the curves are virtually identical in low and
high-density traffic. There are only two shifts in relative
order, for the maximum number of lane changes and
minimum number of speed changes.

This constancy of behavior provides evidence that
programming by reward shapes agent behavior in a
predictable way, and that it can be used in a development
model where agents are trained in a test domain, and
deployed in an application environment.

3.5 Searching the Space of Reward Functions

Now that we have examined the relation between a
reward function and the behavior it generates, it is worth
asking the question in the opposite direction. Can we
generate a specific, predefined behavior via programming
by reward?

We pursued this question by attempting to duplicate (in a
qualitative sense) the behavior of one of the authors who

is a particularly aggressive driver. We did this by
searching across the space of possible reward functions,
seeking to minimize the agentÕs following distance while
simultaneously maximizing the number of cutoff
maneuvers.

The results were both positive and negative. On the
positive side, we succeeded in generating a 10-fold
increase in the number of cutoff maneuvers performed by
the Ôroad rage driverÕ, relative to the reckless teenager, as
shown in Figure 6. However, we were only able to do so
by introducing a slight modification to the shared driving
skill; we gave both drivers the option to change lanes in
the absence of a slower car in front, or a faster car behind.
The original skill lacked the flexibility to support the
desired (extremist) behavior.

This experiment also generated an interesting strategic
lesson for programming by reward. We discovered that it
was far more successful to penalize the roadrage driver as
it was being passed by other cars, rather than to reward it
when it cut off other vehicles. The reason is that it there
are more opportunities to learn from persistent conditions
than momentary events.

4. Related Work on Control Learning

Earlier we contrasted our framework for control learning
with other approaches, but the previous work on this topic
and its differences from our own deserves a more detailed
discussion. Here we consider four distinct paradigms for
learning control policies from experience that have
appeared in the literature.

One body of research focuses on architectures for
intelligent agents, with two well-known examples being
Soar (Laird & Rosenbloom, 1990) and Prodigy (Minton,
1990). These systems represent knowledge about legal
actions as production rules or logical operators, which
they utilize during problem solving and execution.
Because this knowledge predicts the effects of operators,
they can learn from the results of problem solving, rather
than relying, as does Icarus, on feedback from the

0

0.5

1

1.5

2

2.5

3

3.5

4

DIFFERENCE FROM
TARGET SPEED

FOLLOWING
DISTANCE

LANE CHANGE SPEED CHANGE CUTOFF
MANEUVERS

Airport driver

Safe driver
Goldfish driver
Reckless driver

481 Cars

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

161 Cars

R
el

at
iv

e
fe

at
u

re
 v

al
u

e
S

af
e

d
ri

ve
r

(1
61

)
=

 1

Figure 5. A comparison of learned behavior in two
domains.

0

2

4

6

8

1 0

1 2

ABS FROM
TARGET

LANE
CHANGE

SPEED
CHANGE

EMERGENCY
BRAKE

CUTOFF FOLLOWING
 DISTANCE

R
E

L
A

T
IV

E
 F

E
A

T
U

R
E

 V
A

L
U

E Reckless
driver

Roadrage
driver

Figure 6. Using a reward function to generate road
rage.

7

environment. Both architectures learn preferences over
actions, states, and goals, but they encode these as logical
rules, in contrast with Icarus’ use of utility functions. The
ACT-R architecture (Anderson 1993) associates strengths
with learned production rules based on their success in
achieving goals, but these specify a scalar value rather
than a numeric function of environmental features.

An alternate framework is to learn control policies from
observations of another agent’s behavior by transforming
traces into supervised training cases. Such behavioral
cloning typically generates knowledge in the form of
decision trees or logical rules (e.g., Sammut, 1996;
Urbancic & Bratko, 1994), though other encodings are
possible (Anderson, Draper, & Peterson, 2000). Unlike
Icarus, these systems typically acquire control knowledge
from scratch, but one could utilize high-level plans to
parse a behavioral trace and thus constrain the cloning
process. Similarly, our framework could be extended to
learn from observational traces, using them to update the
utility function associated with each skill, much as some
adaptive interfaces (e.g., Rogers, Fiechter, & Langley,
1999) induce such functions from user choices.

A larger body of research emphasizes learning policies
from delayed external rewards. Within this framework,
some methods represent their control knowledge as
logical rules that state the conditions under which
particular actions are desirable (e.g., Grefenstette,
Ramsey, & Schultz, 1990). Others achieve the same effect
with different formalisms like multilayer neural networks
(e.g., Moriarty & Langley, 1998). In this paradigm,
learning involves a search through the space of policies,
using genetic or other methods, guided by the rewards
that alternative candidates receive from the environment.
The search process typically starts from scratch, but,
clearly, it could be aided by starting from skills that
specify legal actions. However, this framework does not
lend itself to a division between legal skills and
preferences stated as utility functions.

An alternative approach to learning from delayed rewards
encodes policies as utility functions, an idea that plays a
central role in Icarus. These functions are typically stored
in a table that associates an estimated value with each
state-action pair, but some work instead uses
approximations. This mapping is learned through methods
like Q learning (Watkins & Dayan, 1992), which update
the estimated value of a state-action pair based on the
discounted reward that it produces. Most research on
estimating value functions in this manner emphasize
learning from scratch, though some work on hierarchical
reinforcement learning (e.g., Andre & Russell, 2000;
Dietterich, 2000; Parr & Russell, 1998; Sutton et al.,
1998) provides the learner with background knowledge.
Our approach fits most comfortably within this
framework, but Icarus’ role as an architecture that
supports programming by distinguishes it from other
research along these lines.

In summary, our approach to representing, using, and
learning control policies has many common features with
other work on this topic. However, Icarus differs from
previous systems in its clear separation of control
knowledge into logical skills and numeric utility
functions, which we claim supports considerable variety
in agent behavior while keeping it within domain
constraints. This division in turn lets us program agents
by reward to exhibit quite different behaviors.

5. Conclusions

Our experiments have shown that we can produce
qualitatively distinct agents via programming by reward.
That is, we can construct one set of skills, define
individual agents by encoding suitable reward functions,
and train those agents by letting them learn from
experience. The reward functions are easy to construct
and their content is unconstrained.

These results provide evidence in support of the
separation hypothesis. If it holds more generally than in
our traffic domain, the roles of preferences and skills may
be sufficiently decoupled to support programming by
reward in practical applications. If so, we will be able to
create entire families of agents in real applications
without writing new skills. This is important because
skill development is time consuming and expensive, hard
work.

While this paper emphasized the use of reward functions
in a programming metaphor, we also designed a reward
function to accomplish a specific objective. This required
a search process, but we can define a more direct method.
In particular, we have shown elsewhere (Shapiro, 2002)
that it is always possible to align an agentÕs reward
function with human utility, such that the agent will do
the best possible job it can for that person as a byproduct
of learning to maximize its own reward. This is an open
area for future research.

In summary, the Icarus architecture and the methodology
of programming by reward appear to provide an efficient
means of encoding desired behavior. The approach
merits an in-depth look in a variety of application
domains, e.g., for constructing conversational agents,
non-player characters in computer games, and household
robots whose personalities are tailored to their owners.

References

Agre, P. (1988). The dynamic structure of everyday life.
Tech Report AI-TR-1085, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology,
Cambridge, MA.

Anderson, C., Draper, B., & Peterson, D. (2000).
Behavioral cloning of student pilots with modular
neural networks. Proceedings of the Seventeenth

8

International Conference on Machine Learning (pp. 25-
32). Stanford: Morgan Kaufmann.

Anderson, J. R. (1993). Rules of the mind. Hillsdale,
New Jersey: Lawrence Erlbaum Associates.

Andre, D., & Russell, S. J., 2001. (NIPS-2000)
Programmable reinforcement learning agents.
Proceedings of the 13th Conference on Neural
Information Processing Systems. MIT Press, pages
1019-1025.

Brooks, R. (1986). A robust layered control system for a
mobile robot. IEEE Journal of Robotics and
Automation, 2, 1.

Dietterich, T.G. (2000). State abstraction in MAXQ
hierarchical reinforcement learning. Advances in
Neural Information Processing Systems, 12. MIT Press.

Georgeff, M., Lansky, A., & Bessiere, P. (1985). A
procedural logic. Proceedings of the Ninth International
Joint Conference on Artificial Intelligence. Morgan
Kaufmann.

Grefenstette, J. J., Ramsey, C. L., & Schultz, A.C.
(1990). Learning sequential decision rules using
simulation models and competition. Machine Learning,
5, 355--381.

Laird, J. E., & Rosenbloom, P. S. (1990). Integrating
execution, planning, and learning in soar for external
environments. Proceedings of the Eighth National
Conference on Artificial Intelligence (pp.1022--1029).
Boston, MA: AAAI Press.

Minton, S. N. (1990). Quantitative results concerning the
utility of explanation-based learning. Artificial
Intelligence, 42, 363--391.

Moriarty, D., & Langley, P. (1998). Learning cooperative
lane selection strategies for highways. Proceedings of
the Fifteenth National Conference on Artificial
Intelligence (pp. 684--691). Madison, WI: AAAI Press.

Nilsson, N. (1994). Teleoreactive programs for agent
control. Journal of Artificial Intelligence Research, 1,
139-158.

Parr, R., & Russell, S. (1998). Reinforcement learning
with hierarchies of machines. Advances in Neural
Information Processing Systems, 10 (pp. 1043-1049).
MIT Press.

Rogers, S., Fiechter, C., & Langley, P. (1999). An
adaptive interactive agent for route advice. Proceedings
of the Third International Conference on Autonomous
Agents (pp. 198--205). Seattle: ACM Press.

Sammut, C. (1996). Automatic construction of reactive
control systems using symbolic machine learning.
Knowledge Engineering Review, 11, 27--42.

Schoppers, M. (1987). Universal Plans for reactive robots
in unpredictable environments. Proceedings of the
Tenth International Joint Conference on Artificial
Intelligence (pp. 1039-1046). Morgan Kaufmann.

Shapiro, D. (2002). User-agent value alignment.
Stanford Spring Symposium, Workshop on Safe
Learning Agents. Stanford, CA.

Shapiro, D. (2001). Value-driven agents. PhD thesis,
Department of Management Science and Engineering,
Stanford University, Stanford, CA.

Shapiro, D., Langley, P., & Shachter, R. (2001). Using
background knowledge to speed reinforcement learning
in physical agents. Proceedings of the Fifth
International Conference on Autonomous Agents (pp.
254--261). Montreal: ACM Press.

Singh, S., Jaakola, T., Littman, M., & Szepesvari, C. (in
press). Convergence results for single-step on-policy
reinforcement learning algorithms. Machine Learning.

Sutton, R. S., Precup, D., & Singh, S. (1998). Intra-option
learning about temporally abstract actions. Proceedings
of the Fifteenth International Conference on Machine
Learning (pp. 556-564). Morgan Kaufmann.

Urbancic, T., & Bratko, I. (1994). Reconstructing human
skill with machine learning. Proceedings of the Eleventh
European Conference on Artificial Intelligence (pp.
498--502). Amsterdam: John Wiley.

Watkins, C., & Dayan, P. (1992). Q-learning. Machine
Learning, 8, 279-292.

