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Abstract

In this paper we present examples of the processes people use
in generating qualitative solutions to highly complex
diagnostic problem solving. We developed a high fidelity
model of the electrical power system for the International
Space Station, and presented scenarios of off-nominal and
fault situations. The model interface provides rich information
about functional organization of the power system, including
system topography and graphs of variables changing over
time.  We presented two versions, with system information
organized hierarchically or displayed in a single level.
Novices, who were unfamiliar with the system to be
diagnosed but technically sophisticated, were asked to study
the scenarios and diagnose the fault situations encountered.
The particular scenario reported here was designed to be
difficult, violate users’ expectations, and require ‘thinking
outside the box.’ Users chose to view quantitative information
frequently as part of developing qualitative, causal
explanations.  We found sophisticated reasoning processes
and frequently correct explanations despite the difficulty of
the task. Design successes and weaknesses are discussed.

Introduction
We present examples of the processes people use in
generating qualitative solutions to highly complex
diagnostic problem solving.  More precisely, we provide
examples and analysis, but of a person-computer system.
The computer presents a large amount of quantitative
(variables) and topological (network) information.  It does
so in a way designed to display information selectively, and
to help the person manage the complexity of information
available.  We ran a process-tracing study of problem
solving and summarize here the variety of component
procedures people used in the task.

This work fits in the tradition of complex problem solving
research and the tradition of analyzing the affordances of
human-computer systems.  Our focus is on describing the
procedures people used, how the procedures exploited the
information available in the interface (particularly
quantitative information), and the successes and pitfalls
encountered.  This paper reports on one problem scenario
designed to be particularly challenging.  In this scenario, the
fault is outside of the system to be diagnosed.  We expected
that recognizing this might require breaking expectations
about the form of the  solutions. Troubleshooting a scenario
that violates expectations is difficult, as when multiple fault
scenarios require abandoning expectations about solution
type (Patrick, Grainger, Gregov, Halliday, Handley, Fames,
and O’Reilly, 1999).  We thought that an expectation-
violating scenario might provide a particularly useful

window into the diagnostic reasoning supported by the
system.

Domain and Tool
The power system of the Space Station is one of many

complex systems that require ongoing monitoring and
occasional troubleshooting.  A high fidelity model of how
the system behaves under a wide range of input conditions
is a powerful tool for supporting these activities. In addition
to high fidelity, a good model should be easy for people to
understand and reason with.  A transparent model (as
opposed to a black box model) reveals the structure and
relations among underlying components, which should
make it easier to use.  In particular, transparent models
support diagnostic reasoning by less expert users. Experts
often have internalized detailed models of a system, which
let them reason from massive, unstructured information sets
such as fluctuating arrays of variable values.  In contrast,
less experienced diagnosticians lack a detailed and fluent
knowledge of how variables interact and affect each other.
As a result, they cannot duplicate the expert’s feat; they
need information about the system from a source other than
their background knowledge. Further, we believe that a tool
that reveals the structure and function of the system being
modeled would also aid experts. This has practical value as
there is sometimes need for diagnoses to be done by less
expert personnel. Economic needs to ‘do more with less’
and technical needs of extended duration missions will
eventually require ground personnel or astronauts to monitor
systems with which they are less familiar. Training
technicians in structured troubleshooting methods,
organized around functional subsystems, improves
performance (Schaafstal, Schraagen, & van Berlo, 2000);
we expected that our diagnostic system, which presents the
structure and function of the underlying system, would
support sophisticated diagnostic reasoning even by novices.
Our system also provides information at multiple levels of
scope and specificity, important in supporting
troubleshooting for process control (Lindegaard, 1995).

We constructed the Power Monitor, a high fidelity,
transparent model of the space station power system, and
embedded it in a tool for monitoring and diagnosis. The
modeling method we use represents the behavior of
dynamic systems in terms of an interconnected network of
processes and variables, called a causal process model
[Langley et al., 2002].  Shapiro et al (2004) describes the
Power Monitor in detail.  Here we focus on its usability and
the forms of diagnostic reasoning it supports.
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Figure 1 shows the interface to the system. It depends on
two primary representations of system information: a
dynamic network of connected variables and processes, and
variable graphs plotting values over time.  Both provide
much richer information than available in the current
monitoring system and than typically provided in
monitoring systems. The network nodes are the processes
(rectangles) and variables (ovals); the links are arrows

showing causal relations. Variables are linked to the
processes for which they serve as input, and processes in
turn are linked to their output variables. Thus the causal
flow of the system is shown in a network of processes and
variables. Processes and variables are flagged with a yellow
(or red) border to mark deviation from predicted (or out of
threshold) performance.

Figure 1: Hierarchical condition layout, with time set to Day 3, when generation is higher than predicted to compensate for
under-generation on Day 2. User has 3 variables open and is comparing the timing and nature of the discrepancy between
predicted and observed plots.

Two versions of the interface were used in the study,
although comparison is not the focus here.  In one version,
the network was organized hierarchically.  A top-level
window showed subprocesses for the power generation,
storage, and load subsystems. These could be clicked to
show the process-variable network representing the
subsystem, which in turn might have subsystems.  In the flat
version the network was displayed without any hierarchical
grouping. In both cases the Power Monitor displayed the
network by showing the flow of causal links from left to
right, to the extent possible. In both cases the network
required multiple screen-areas to show the entire layout.  In
the hierarchical condition, the user navigated through the
display by clicking on subsystems and arranging the open
windows.  In the flat condition the user navigated through
the display by scrolling across the whole layout to view the
desired part of the network.  In both, the network changes as
different processes become active: only links to and from
active processes are displayed and only active processes are

highlighted. Thus, temporal navigation while viewing the
network shows changes over time in the active processes.

Clicking on the variable oval opens the variable graphs.
The graph displays the value of the variable (y) over time
(x) from the beginning of the scenario, up to the current
time step.  Many variables are given both a directly
observed value and a predicted value.  The predicted value
is what the variable would be if every thing were operating
as planned.  When the variable is as expected, the plot lines
for the predicted and observed fall on top of each other.  If
the variable is not as expected, the observed values depart
from those predicted. Using temporal navigation while
viewing a variable graph will “draw” and “erase” the plot
lines over time.

 In addition to the video-like temporal navigation, the
interface provides a method for “causal navigation”. Right-
clicking on a variable or process node allows the user to
show and then traverse either the set of forward links or
backward links connected to that object.
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Task and Participants
We used this testbed to look at complex, diagnostic problem
solving by a human-machine system. Problems are
scenarios in which off-nominal events -- serious or slight --
occur.  A solution is a qualitative explanation of what is
wrong, including identifying the root cause and the
corresponding effects.  Understanding effects is an
important index of explanation quality, and also important
because side effects can produce ancillary damage that
needs to be addressed; for example, excessive discharge of
the battery to compensate other faults can result in damage
to the battery.

Even with very good diagnostic tools, locating and
understanding faults in this domain can be very difficult.
Even though the discrepancy between predicted and
observed may be clearly flagged with a yellow border
around a variable, it is a long way from noticing a collection
of flagged variables to understanding the causal structure of
the event.  There are many system components and effects
propagate over many links (creating breadth and depth);
effects can be nonlinear because of compensatory
interaction; faults can appear simultaneously at multiple
components; and the time a fault is visible may be
decoupled from the time the problem is flagged (because it
may take multiple time steps to create the degree of
discrepancy necessary to trigger flagging).

It addition to these complexity issues, problem solving is
particularly difficult if it requires reasoning about situations
beyond the presumed boundaries of the problem. People
recognize in principle that information may be incomplete:
sensors may fail and models can have errors.  Nevertheless,
it is very hard to simultaneously reason about an underlying
system and “meta-reason” about one’s reasoning tools.

We hoped that novice users would be able to negotiate the
diagnostic path if they were supported by the Power
Monitor.  We advertised in engineering classes at Stanford
and on bulletin boards in the engineering buildings, for
testers to use and evaluate the system.  Our intent was to
have users who were motivated, skilled in technical
thinking, and familiar with at least some concepts relevant
to system troubleshooting, electrical systems, circuit
diagrams, and/or control systems. In short, we wanted
people to diagnose a difficult, unfamiliar problem who were
technically proficient but lacked knowledge about the
particular system to be diagnosed.

The fault scenario we focus on in this paper is the
Shadowed Panels Scenario.  It was intended to require
“thinking outside the box,” and was the first problem
presented.  The scenario simulated the situation in which the
solar panels are partially shaded, as from an external object
(or a piece of the Space Station) which begins to shadow the
panels during the daylight (insolation) period, and stops
during the night (eclipse). Thus the fault was actually
outside of the target system.  We thought this explanation
would be hard to discover because the training that users
had just received and the characterization of the experiment

treated the Space Station power system as the target system
to be diagnosed.

Study Overview: Methods and Results
Method . Twelve users participated; six tested the

interface version with the hierarchical network layout and
six tested the version with the flat network layout.  The
whole experiment lasted three hours.  Participants worked
on six problems, plus some auxiliary tasks. Users received
training lasting roughly 40-60 minutes.  We taught users
about the general structure and function of the Space Station
power system components, we explained and provided
practice with the interface, and we gave some practice
problems under normal operation conditions, such as
identifying a good time to schedule an additional load and
explaining why they chose that time.  Users were asked to
talk aloud during problem solving.  Work times on the
Shadowed Panels Scenario ranged from 7 to 32 minutes;
users were urged to finish up after 25 minutes.

Results Summary. We summarize problem solving
outcomes to provide context for discussing the processes
used in this activity.  Prior to the experiment we had
identified two simple satisficing strategies which might
produce explanations that users would find adequate.
Temporal Precedence is a strategy of looking for the earliest
component to be flagged as faulty, judging that component
the cause, and all other flagged components as effects.
Causal Precedence is a strategy of looking for the flagged
component most upstream in the causal network, judging
that the cause and all other flagged components as effects.
Remarkably, no user restricted themselves to either of our
simple, hypothesized strategies;  all produced deeper and
more elaborated accounts, and used more information. In all
but one case, the user of the Power Monitor system
produced a relevant diagnosis; 11/12 correctly localized the
problem to the power generation functions of the system. Of
greatest interest, in a third of the cases (4/12) the diagnosis
was specific and correct: reduced sunlight.  This required
“thinking outside the box” in the sense that these
explanations located the fault outside the focal system about
which users were being taught and given data.  The four
users were able to compose the available information-
gathering processes to produce a relevant, exact,
expectation-violating diagnosis. A second measure gave
users a list of possible characterizations and asked them to
check the descriptions that applied; 10 of 12 checked
“shadowing the panel.”

The data hints that the hierarchical interface supported
diagnostic reasoning better than the flat interface.  All the
hierarchical condition users attributed the fault to the
generation system; one to misalignment of the solar panels
by the gimbal system (which rotates the solar panels to point
at the sun) and five to reduced power generation; two of five
focused on possible problems with shunting (deliberately
reducing power generation) while the remaining three
correctly concluded the panels were not getting enough sun
due to shadowing by some object.  In the flat condition, five
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users attributed the fault to generation, and one erroneously
attributed the fault to unpredicted excess load.  Of the five
who identified the problem as generation, three focused on
shunting, one on mechanical failure within the panels, and
one on reduced input.

Explanations varied considerably in depth of
understanding.  Careful study of the protocols revealed one
subproblem that gave us a very sensitive index of the
sophistication of the user’s model.  This subproblem
concerns the effect that appears on Day 3 as a result of
reduced power generation on Day 2.  Because of low
generation on Day 2, the batteries were drawn down more
than predicted.  As a result, the power generation on Day 3
also is not normal: power is over-generated in order to
recharge the batteries.  Recognizing this over-generation
and why it occurred requires a fairly elaborated and accurate
model of the system dynamics in the scenario. The
alternative user models of this subproblem included a) not
noticing or analyzing this less critical departure from
normal, or b) considering it a separate problem, e.g., caused
by an independent episode in regulating shunting. Because
all users’ attention was focused on the more serious Day 2
problems, this is a difficult aspect of the overall problem.

 Three of the six hierarchical users reached the correct
and complete analysis of this sub-problem (two noted the
over-generation but had different explanations; one did not
note).  In contrast, no user in the flat condition had the
correct model, three never noted the discrepancy (either by
cursor-pointing or by comment), two noted it but provided
no explanation, and one provided an incomplete
explanation.  Developing the correct and complete model
depended on a complex comparison.  All users who
discovered the correct solution compared the relation
between predicted and observed values on one variable with
the predicted-observed relation for one or more additional
variables. Further, the solution required organizing the
needed information: gathering operations and building an
integrated model without becoming confused, disoriented,
or overwhelmed.

What Processes Generated the Explanations?
Solving these diagnostic problems requires several types

of process.  The user must detect a fault, determine the
scope of the problem in terms of the elements and time span
involved, and understand the causal relations among these
elements over this period. The user must navigate through
an enormous amount of potential information in order to
find the information that is relevant to the circumstance at
hand.  This requires understanding the information,
integrating it to form an explanation, and modifying the
explanation until either it seems satisfactory or further
improvement seems unlikely. We focus our attention on the
information gathering processes because these are the ones
the interface was designed to support, and hence are the
most observable.  Our goal here is to sketch a taxonomy of
the processes closely tied to gathering information,

We summarize here the basic operations supported by the
interface for accessing information.  We then focus on the
more complex processes (composed of basic operations)
that access and select information in the service of relational
reasoning.  Relational reasoning is a critical process because
it is both closely linked to observable operations of
information gathering, and is a key method by which
information is organized to build a causal explanation.

From a complementary perspective, these processes show
that users are capitalizing on the affordances of the Power
Monitor to guide diagnosis.  Participants use the graphs of
variable values over time in sophisticated ways and in
combination with network information. Users differ in how
much they rely on variable information versus tracing status
information through the network.

Basic operations.  The system supports a set of operators
for accessing visible information, network information,
variable information, and the scenario as a whole.

1) Indicate and select information (standard GUI).
Actions: point with cursor to indicate any information and

click or drag windows into position. Typical use: point to
provide a visual anchor to any information being
considered. Open and align windows to organize sets of
information being used together.

2a) Navigate over the network: layout-based.
Hierarchical Action: open or close network subsystem

window; arrange open windows. Flat Action: scroll network
subsystem window to bring desired section of network into
view.  Typical use: to locate components marked as faulty
by their color.  Additional uses: to trace links in the
network; to check what processes are active at a given time.

2b) Navigate over the network: causal links.
Action: right click to choose forward (effects) or

backward (causes).  Clicking on the tag for component X
(variable or process) shows all components linked backward
or forward; clicking on a tag highlights and displays the
component in the network. Typical use: to find candidate
effects or causes linked to a fault-flagged node.

3) View variable values.
Action: click on variable oval or move graph into view.

Typical use:  check the status of a variable. Often used in
comparisons.
4) Navigate through scenario time. Actions: click to play;
click to stop; click to move 1 time step; drag to target time-
step. Typical use: play scenario through for initial viewing;
play or drag over focal time of failure; step through critical
period.

Composed Processes. The basic operations described
above were composed into more complex, goal directed
procedures.  We identified six of the processes that people
used to gather and reason with information.  These are
presented roughly in order of the complexity of information
being used in reasoning.

1) Assess Network Status: View Fault-flagged
Components.  For many components, the model generated
enough information to flag a component (by changing its
color) if it was off-nominal. People used this information to
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detect the occurrence of a problem, to give an impression of
severity and change of severity over time, to bound the
problem in terms of components involved, and to select
variables for function-level viewing.

2) View Variable Function: Use Value-over-Time
Representation of Variables. People used the displays of
variable values plotted over time to reason in more detail
about individual variables than supported by the network-
level view.

a) Select variables for monitoring. Users checked the
day/night variable to establish the overall pattern of activity
for the power system.  Similarly, they used the battery-
charging graph to track the high-level power flow of the
system. In the hierarchical condition, participants used the
top-level window to select variables for monitoring, even
though these variables were never flagged red or yellow.
Interestingly, four of six hierarchical users opened
unflagged,  high-level variables from this window,
apparently with a goal of monitoring or understanding the
system rather than reacting to a particular  problem variable

b) Diagnose from function shape. Users also studied the
shape of the function to make very specific inferences.  For
example, one user used the step-function contour of the
SolarPowerOut graph, at the point that arriving sunlight is
cut and solar generation drops, to reason that the probable
cause of the change was something outside the system:

“Here, at the beginning it goes as expected, and then
suddenly, it drops. (pause) Things usually don't happen like
this, like, it doesn't suddenly go into a right angle. It must be
some kind of external thing.”

 3) Assess Discrepancy from Expected: Use Predicted
Value Plotted with Actual Value. The availability of the
plots of predicted values (and thresholds, when available),
as well as actual values, supports a number of additional
reasoning activities.

a) Scoping the problem. Users examined the paired plot
lines to identify the time when one variable diverged from
predicted value.  They identified the point when ‘things
return to normal’, using this to bound the time scope of a
problem.

b) Type of Discrepancy. Users also determined the nature
of the departure from a normal value, constraining the
nature of the problem. At the end of Day 2, many users
studied the discrepancy in SolarPowerOut to reason about
the nature of the generation problem, with screens arranged
as in Figure 1. For example, immediately after the point
where the solar power drops, one user opened IOBatAmps
(input/output Battery Amperes), and noted “here’s a spike
here  [plays scenario] ... it’s lower than expected.”  One
particularly interesting case is the examination of
SolarPowerOut when the generation on the third day is
higher than expected, in order to compensate for the battery
discharge on the second day.  One user selected
SolarPowerOut, looked at Day 3, started to say it was again
too low, did a double take, and then corrected himself to say
the power generation was now too high.

 Figure 2. Reasoning about the discrepancy between
predicted and observed on a single variable. This user rarely
opened multiple variables at once, but worked through a
series of off-nominal variables.

c) Hypothesis Rejection. Comparison of actual to
predicted values also serves the very important function of
allowing users to cleanly test and reject hypotheses.  For
example, once they had determined that generation was
lower than it should be, several users hypothesized that the
gimbal system might be responsible, and checked the
gimbal variables.  Finding that the actual values matched the
predicted was a sufficient and compelling basis for rejecting
the hypothesis that alignment of the panels by the gimbal
was responsible for the problem.  A few users also checked
load variables to reject the possibility that excess demand
was contributing to the problem.

4) Comparing Variables: Multiple Variables in View
Simultaneously.  Users opened multiple variable graphs at
once, and compared them.  Comparison was indicated both
by talking aloud and by pointing to corresponding parts of
two graphs.

a) Reference Comparisons. Many users related a
reference variable to a second variable in order to develop a
more integrated and coherent model of what was happening.
Several users viewed the day/night graph to interpret what
was happening in other graphs, such as SolarPowerOut.
BatteryCharging was also used this way, as were the SOC
(state of charge of the batteries) graphs.

b) Parallel Parts Comparisons. Users also compared the
variables of analogous parts to see if a fault was local to one
part or general to the system.  For example, many users
selected one variable, such as SOC (state of charge), for
each of the three batteries.  If the function looked the same
for all three, users concluded that the problem was not
specific to one battery, but originated outside and upstream
of the individual batteries.  Users then monitored variables
from just one battery to track all three.  Several users also
did this in an analogous situation with two variables in the
generation system.

5) Comparing Comparisons of Variables: Relating the
Predicted to Observed Pattern in One Variable to Other
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Variables.  The variable representation supports a still more
powerful type of reasoning, critical to understanding causal
structure of the system.  Users compared how and when one
variable departs from predicted value with how a second
variable departs from its predicted value in order to make
complicated inferences about causal dynamics. To score
behavior as “comparing comparisons” the user needed to
relate predicted-observed information in one graph to
predicted-observed information in the other, either by
explicitly pointing between corresponding points on the two
graphs, or relating the two variables verbally. An example
screen layout is shown in Figure 2.

Six users clearly did this (five in hierarchical, one in flat);
two additional (flat) users made comparisons between some
variable and the binary day/night variable; two users (flat)
never made multi-variable function comparisons and for two
users activity was ambiguous but did not clearly show
comparison. Users did these comparisons to determine
which variable deviated from its predicted value first, and
also to understand and reason about the compensatory
relation between variables.

This user had opened SOCBattery1, SOCBattery2, and
SolarPowerOut through the completion of Day 3.

“There was a deficit in solar power out [points to Day 2].
But here we have surplus [Points Day 3; pause] that could
cure [points SOC Day 3] the problem of battery, to go back
to its original predicted level.”

6) Inferences from Process Information. Information
about processes seemed to be harder to use than information
about variables.  Users did not always make the appropriate
inferences about processes.  Specifically, users might
attribute a fault to a process even when that process was not
flagged.  For example, several users concluded that the fault
lay in shunting because the process ShuntSolarPower was
upstream of the problematic variable SolarPowerOut.  This
conclusion is suspect because the process was not fault-
flagged.  It would have been flagged if the expected input
and output relations were not being maintained.

In contrast, noticing that this process was normal was the
critical piece of evidence for one user to hypothesize that
the problem must lie outside the system itself.  This is one
of the most sophisticated pieces of reasoning we observed,
and critically exploits the information available about
processes.  [Here the screen layout was similar to that in
Figure 1, but the cursor and attention were focused on the
lower left window. The rectangular processes were all
showing normal, but the “downstream” variables were
yellow.  User had checked the gimbal system, and
concluded that it was fine.]

“They [the processes] are not lighting up either, uh,
providing output for a given input.  So, [sighs, pause] ad
input equals bad output. Right input. [very long pause] All I
can say is they’re not getting enough sun. At this point.”

Problems . Despite the successes reported here, the
majority of users did not find and correctly integrate all the
relevant information the system had to offer.  Some users
became lost or exhausted in the process.  They might have

known they did not understand everything but were
uncertain how to proceed.  As well as showing that people
can make use of the resources offered in this interface, the
study points to limitations of the design.  The design
provides an excellent model of the system being diagnosed,
but it does not directly model or support the users’ activity
in solving the problem. For example, there is no support for
keeping track of user-generated information: variables that
have been examined, anomalies detected, hypotheses
formed, or explanatory gaps remaining.

Conclusions
We were struck by the sophistication of the reasoning

demonstrated by novices; this occurred in an area where
human deficiencies are often conspicuous, especially in the
absence of deep knowledge of the task.  Although the study
was conducted in the context of assessing one specific, real-
world task, we think the demonstration of these reasoning
processes is of broader consequence. They demonstrate
successful reasoning with multi-variate, quantitative
function information to develop causal explanations of
problems in complex, unfamiliar systems.  They illustrate
the merits of designing tools for complex diagnosis that
provide both rich topological and rich quantitative
information. Sophisticated, successful problem solving
emerges from the resulting human-machine system. Future
analysis will identify more about the frequency and
circumstances of using the various reasoning processes
identified here.
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