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Abstract
Transfer is the ability to employ knowledge acquired in
one task to improve performance in another. We study
transfer in the context of the ICARUS cognitive architec-
ture, which supplies diverse capabilities for execution,
inference, planning, and learning. We report on an exten-
sion to ICARUS called representation mapping that trans-
fers structured skills and concepts between disparate tasks
that may not even be expressed with the same symbol set.
We show that representation mapping is naturally inte-
grated into ICARUS’ cognitive processing loop, resulting
in a system that addresses a qualitatively new class of
problems by considering the relevance of past experience
to current goals.

Introduction   
Computational systems tend to be expensive artifacts, in
part because of the time and energy required to engineer
their underlying knowledge. The desire to reduce this cost is
the practical motivation behind a great deal of work on
transfer, defined as the ability to employ knowledge ac-
quired in one domain to improve performance in another.
The long-term goal of transfer is to replace independent
development efforts with an encode and reuse model.

Given this background, it is natural to study transfer in
the context of agent architectures that pursue a general the-
ory of cognition. In particular, if we can integrate the ca-
pacity for transfer into a system that performs general prob-
lem solving and execution, we will understand how to ac-
complish transfer across a wide variety of tasks that span
perception, reasoning, and action.

We pursue transfer in the context of the ICARUS cogni-
tive architecture (Langley & Choi, 2006), which employs
hierarchical representations of concepts and skills, and pro-
vides capabilities for perception, inference, reactive execu-
tion and learning. While ICARUS offers a theory of perform-
ance and learning within a single domain, the transfer task
requires knowledge acquisition, transport, and reuse between
two distinct tasks. The challenge is to integrate those capa-
bilities into ICARUS in a natural way.

Our prior work (Choi et al., 2007) demonstrated knowl-
edge transfer among similar tasks, without new mecha-
nism, by exploiting the generality inherent in ICARUS’ ac-
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quired skills. These tasks were phrased in a single problem
domain, and expressed with a common representation. In
contrast, this paper reports on an extension to ICARUS that
enables transfer between source and target tasks that bear
little surface similarity and might not even be expressed
with the same symbol set (sometimes called far transfer, a
term we adopt here).

As before, we focus on acquiring and transferring struc-
tural knowledge in the form hierarchical skills and con-
cepts. However, we introduce a new mechanism to perform
far transfer, called representation mapping, which can be
thought of as a goal-driven form of analogy; it ports skills
and concepts associated with the subset of source goals that
make sense in target terms.

We adapt ICARUS to support representation mapping by
embedding it in the system’s main cognitive processing
loop. This results in an architecture that seeks opportuni-
ties for knowledge transfer each time it is exposed to a new
task. This integration supports novel functionality. We
claim that:

• The diverse capabilities of a cognitive architecture enable
far transfer.

• ICARUS’ assumptions naturally support this capacity.
• The capacity for far transfer lets the architecture solve a

qualitatively new class of problems.

The following sections expand on this development and
justify these claims. We begin by presenting examples of
the far transfer task. Next, we discuss the mechanisms for
far transfer, including an overview of ICARUS that addresses
the first claim. We discuss integration issues then docu-
ment the claim that far transfer produces qualitatively new
functionality via a lesion experiment. We follow with a
discussion of related work, and concluding remarks.

The Transfer Task
We study transfer via a collection of challenge problems
phrased as source-target pairs. Here, the object is to solve
the source problem, extract transportable lessons from that
experience, and demonstrate that this knowledge improves
the agent’s ability to solve the target problem. We measure
transfer by comparing the time required to solve the target
problem, with and without exposure to the source.

We employ the General Game Playing (GGP) framework
(Genesereth et al., 2005) to structure this task. GGP en-



codes tasks (typically games) in a relational logic language
that employs separate theory elements to describe legal
moves, state transitions, and the initial state associated
with game instances. GGP also enforces a careful evalua-
tion model by presenting game rules at the same time as
game instances. This requires agents to employ
broad/general mechanisms for performance and learning,
while constraining the role of background knowledge.

We study three types of far transfer tasks, characterized
by the nature of the analogy within each source-target pair.
Homeomorphic tasks admit a one-one correspondence be-
tween symbols denoting objects and/or relations, and allow
elements in the source with no target corollary. Figure 1a
gives an example drawn from a game called Escape, where
the agent’s goal is to direct the explorer to an exit. The
source task requires nailing together logs to create a bridge
over the river, while the target requires tying barrels to-
gether with rope. The relations for nailing and tying differ
from source to target, and while the logs correspond to the
barrels, the hammer has no target corollary. Note that the
problem instances are distinct even given the source-target
mapping. This makes transfer difficult because the agent
must discover the mapping and transfer problem-solving
knowledge in general form.

Reformulation scenarios consist of isomorphic problems
created by systematically (but consistently) replacing all
source symbols to obtain the target task. Figure 1b gives
an example taken from ‘Wargame’, where the goal is to
maneuver the soldier to the exit while avoiding/defeating
enemies. The enemies actively seek the soldier and move
twice as fast, but can become stuck by walls. Supply
points contain weapons and ammunition. These scenarios
are difficult because the agent must discover a deliberately
obscured source-target relation.

Finally, cross-domain scenarios draw the source and tar-
get problems from different games. Figure 1c gives an Es-
cape to ‘mRogue’ example (after the ancient text game),
where the agent gets points for exiting the playing field,
gathering treasure, and defeating monsters. These scenarios
do not deliberately support analogies. However, all games
occur on 2D grids and involve reaching a goal after sur-
mounting obstacles by collecting and employing appropri-
ate tools. Problems in this class are difficult because the
agent has to identify both the symbol mapping, and the
portions of the source solution that are preserved.

Adapting ICARUS to Support Far Transfer
Far transfer requires three steps: acquisition of knowledge in
a source task, communication of that knowledge to a target

task despite a representational divide, and reuse of that
knowledge in the target context. This section discusses our
technology for enabling far transfer in the context of the
ICARUS architecture. We begin with a summary of the
framework, focused on its key modules and their interac-
tion, in keeping with the integration emphasis of this pa-
per. We discuss ICARUS at length in other publications
(Langley & Choi 2006).

The ICARUS Architecture
ICARUS is cognitive architecture in the tradition of work on
unified theories of cognition (Newell, 1990). As such, it
provides general-purpose representations and mechanisms
for sensing, reasoning, and acting in a wide variety of cir-
cumstances. Figure 2 illustrates its key components.
ICARUS represents knowledge in terms of hierarchical skills
and concepts, which are stored in concept and belief memo-
ries. The concept memory contains structures that describe
classes of environmental situations. The belief memory
contains instantiations of these concepts believed to de-
scribe the current situation. The skill memory contains
knowledge about how to accomplish goals in the abstract.
Skills are hierarchical structures that link goals and con-
cepts to subgoals or action.

Table 1 illustrates some of the skills and concepts re-
quired to control agent behavior in Escape. It includes a
skill for accomplishing the top-level goal (called goal-1)
that will cause the agent to construct a tool that will com-
promise an obstacle (e.g., a bridge to cross the water),
bring the tool to the obstacle (which deploys the bridge in
this domain), and then to proceed to the exit. Each of the
subgoals is recursively defined. Here, AtExit is defined as a
hierarchical concept that references the predicate ‘location’.
The location predicate also serves to index a skill (which
moves the Explorer to that location).

ICARUS operates in distinct cycles, each of which starts
by depositing observed objects into a perceptual buffer.
These provide the material for conceptual inference, which
adds implied ground literals to a belief memory. Next the
architecture descends the skill hierarchy, starting from the
highest priority top-level goal that is not satisfied. ICARUS
retrieves a skill with a head that matches this goal and with
conditions that match against current beliefs. The system
applies this process recursively to this skill's first unsatis-
fied subgoal, continuing downward until it reaches a primi-
tive skill with associated actions. ICARUS then carries out
these actions in the environment, producing new percep-
tions that influence inference and execution on the next
cycle. The architecture also includes a means-ends problem
solver that deals with novel tasks for which no skills exist,

Figure 1. Source-target pairs for (a) a homeomorphic transfer task in Escape, (b) a reformulation transfer task
in Wargame, and (c) a cross-domain transfer scenario from Escape to mRogue.



as well as a learning process that stores the results of suc-
cessful problem solving as new skills.

Table 1: Hierarchical skills and concepts for Escape.

 ((Goal-1   Explorer)
 :start   ((obstacleType ?Obstacle ?ObstacleType)
               (location ?Obstacle ?Xo ?Yo)
             (canCompromise ?itemProperty ?ObstacleType)
             (not (destroyed ?Obstacle)))
 :subgoals ((property ?item ?itemProperty)  
                   ; construct an item that can overcome an obstacle.
                 (holding ?item)
                 (nextToExplorer ?X3 ?Xo ?Yo)
                (atExit)))

((atExit)
 :relations ((location explorer ?X ?Y)
                 (location exit ?X ?Y)))

Details of the General Game Playing framework led us to
diverge from the standard ICARUS architecture on a number
of fronts. In particular, we replaced the bottom-up inference
module with a top-down mechanism to handle the number
of entities perceived in the environment. Because GGP pro-
vides fully modeled, deterministic domains, we replaced the
reactive execution module with one that mentally simulated
execution with N-step look ahead, using technology adapted
from Nau et al.'s (2001) SHOP2 planner. We also replaced
the ICARUS learning mechanism with a related technique
(Nejati et al., 2006) that analyzes a solution trace, in this
case found through lookahead search, to produce new hierar-
chical skills that solve the training problem and similar
ones.

Figure 2. The ICARUS architecture.

Despite these differences, the resulting system relies on
many ICARUS features to produce transfer effects, including
the commitment to hierarchical knowledge, the distinction
between concepts and skills, and indexing skills by the
goals they achieve. The system begins by translating the
GGP game specification into concepts and primitive skills,
then invoking automatically generated exploration skills to
search for a solution to the source problem. Upon finding
one, the system acquires new hierarchical skills that gener-
alize the solution that become the object of transfer to the
target problem. After porting these concepts and skills,
ICARUS uses them in the target domain, falling back on
exploration behavior when guidance from source knowledge
is exhausted.

In previous research, we demonstrated that ICARUS can
transfer learned skills to target problems that involved the

same predicates as the source. The current work introduces a
mechanism for mapping representations that enables trans-
fer into structurally similar settings that may involve dif-
ferent predicates. This capacity for far transfer clearly builds
upon the assumptions about representation, performance,
and learning described above.

Representation mapping
Transfer via representation mapping requires new process
flow; it adds a comparison of source and target domains to
the execution and skill learning steps described above.
Representational transfer consists of two components. The
representation mapper finds the correspondences between
the source and target symbols and the representation transla-
tor uses those correspondences to translate source skills and
concepts into skills and concepts in the target domain. We
focus on the representation mapper.

The intuition behind the representation mapper is that
transfer is possible if we can explain the source solution in
target terms. In overview, the algorithm analyzes how the
source problem is solved using source domain knowledge
and replicates that same analysis from the perspective of the
target domain. This process forges links between the source
and target theories.

In more detail, given a pair of source and target prob-
lems, the representation mapper takes as input the trace of a
successful source problem solution, the source and target
goals, and the source and target domain theories. The solu-
tion trace consists of an initial state, a sequence of actions
and the corresponding states resulting from these actions.
The goals are concept instances that trigger successful ter-
mination of the tasks, and the domain theories are descrip-
tions of domain dynamics encoded as ICARUS primitive
skills (action models, including effects and preconditions)
and concept definitions for percepts and abstract features of
state. After analyzing the source solution in the context of
source and target theories, the representation mapper out-
puts correspondences between the source and target predi-
cates (and constants).

The first step of representation mapping is to analyze the
source solution trace using the source domain theory to
determine how the goal of the source problem is achieved.
This process is similar to Nejati et al.'s (2006) analytical
learning method, which explains a goal or subgoal either
by decomposing its concept definition or by regressing it
across a primitive skill that achieved it, producing new
state descriptions that can be explained recursively.

Given an explanation of the source solution with source
knowledge, the representation mapper constructs an expla-
nation in the terminology of the target theory by asserting
correspondences between the concept instances in the source
explanation and target predicates as necessary to complete
the derivation. The correspondence support set collects
these assertions, and we check new assertions against this
set for consistency. If no consistent correspondence exists,
the search for an explanation backtracks to an earlier choice
point. One correspondence often leads to another. For ex-
ample, in bridging Escape and mRogue, (location  explorer 1 2)
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↔ (place  hero ?X ?Y), implies the correspondences {location↔
place,  explorer ↔ hero, 1↔?X, 2↔?Y}.  This mapping includes
relational symbols.

Table 2. A skill mapped from Escape to mRogue.
/* Source skill (learned) */

((combining ?item1 ?item2 ?combo) 
 :start          ((property ?item3 hammer)

(property ?glue  doesnail)
(property ?item1 nailable)
(property ?item2 nailable))

 :subgoals  ((holding ?item2)
(holding ?glue)
(holding ?item3)
(holding ?item1)
(do-combine ?item1 ?item2 ?glue ?combo)))

/* Correspondences */
        doesnail↔doestie, nailable↔tieable,
        (property ?item3 hammer) ↔nil

/* Target skill (output of mapping) */

((combining ?item1 ?item2 ?item3) 
 :start          ((property ?item3 doestie)

(property ?item1 tieable)
(property ?item2 tieable)
(newsymbol ?combo))

:subgoals  ((holding ?item2)
(holding ?item3)
(holding ?item1)
(do-combine ?item1 ?item2 ?item3 ?combo)))

Like other algorithms that find analogies, our representa-
tion mapping algorithm is guided by several constraints and
heuristics. These fall into three groups; structural, semantic
and pragmatic constraints, as described by Holyoak and
Thagard (1989). Pragmatic constraints concern the purpose
of analogy, and occupy a central role in our algorithm. Be-
cause the mapper is guided by the explanation of how the
source goal is achieved, it only considers concepts relevant
for the source solution and automatically abstracts away the
rest. As a result, the system addresses homeomorphic tasks
by removing unmapped preconditions and subgoals for
source skills (implementing a form of task abstraction).
Second, our algorithm uses a structural hard constraint that
assumes a one-to-one mapping among predicates and con-
stants found in source and target concepts. This constraint
ensures that correspondence sets such as “1 ↔ ?X, 2↔?X” are
disallowed. This assumption has been employed in previous
systems (Falkenhainer et al., 1989; Holyoak & Thagard
1989) and has been suggested as a constraint in human
analogical reasoning (Krawczyk et al., 2005). Finally, our
algorithm is guided by a semantic constraint that prefers
mapping between similar concept predicates. For a given
support set C, we measure the degree of match between two
predicates by comparing their definitions recursively, count-
ing the shared symbols between the source and target and
already constructed maps in C. Given multiple representa-
tion maps, the algorithm selects the one with the overall
highest heuristic score.

As an illustration, consider the homeomorphic transfer
scenario shown in Figure 1b. As part of skill learning, the
architecture acquires the component skill for Escape shown
at the top of Table 2. Next, representation mapping consid-
ers the target theory for mRogue to extract correspondences
that relate properties of objects in the two domains. The
representation translator completes the process by translat-
ing the source skill into target terms, as shown. 

Integration
Research on cognitive architectures emphasizes economy
and generality of mechanism as a necessary step en route to
a general theory of cognition. This implies a desire to ex-
pand capability while minimizing the use of new represen-
tations and control structures. Integrating the capacity for
far transfer required two changes to ICARUS in addition to
the ones we have already described::
• We add an episodic memory to hold past experiences.
• We augment skill retrieval to seek opportunities for

transfer in addition to immediately relevant skills.

In general, episodic memory supports various forms of
macro and speed-up learning, as well as associative re-
trieval. It is also explored in other cognitive architectures,
such as Soar (Laird et al., 1987). Our implementation is
partial, and currently provides information necessary only
for skill learning and transfer via representation mapping.

The change to skill retrieval has a more systemic effect.
In addition to supporting transfer, it transforms the architec-
ture into a cumulative learner that continuously seeks to
adapt prior experience to its current context. This frame-
work is much richer, and much more relevant to human
experience, than the previous capabilities for performance
and learning. This benefit is a natural consequent of sup-
porting far transfer.

We note that our current implementation seeks the op-
portunity for transfer only on the first exposure to a new
domain, and that we need to address many issues in cumula-
tive learning. We expect that future versions of ICARUS will
interleave skill retrieval via transfer with performance (after
recognizing conditions that warrant the attempt).

Evaluation
We have made the claim that the capacity for far transfer
lets the modified ICARUS solve a qualitatively new class of
problems. This section justifies that claim in the context of
a lesion study that determines the quantity of transfer due to
(a) reuse of generalized skills without representation map-
ping (the lesion case) and (b) transfer of generalized skills
with representation mapping (the  non-lesion case). We
measure transfer as the difference in agent performance on a
given target problem with and without exposure to the cor-
responding source (normalized to facilitate comparison).
We hypothesize that the ability to map skills across prob-
lem representations will qualitatively improve transfer in
the non-lesion case relative to the lesion case.

In the experimental protocol, the non-transfer case (NTC)
agent sees the target problem alone and must solve it by a
base set of exploration skills.  In contrast, the transfer case
(TC) agent has the opportunity to solve the source prob-
lem, acquire knowledge from that experience, and make it
available for transfer.  The TC protocol involves several
steps (consistent with the General Game Playing format):

1. download the source game definition and initial state
2. solve the source task via exploration,



3. learn hierarchical skills and concepts from the solution,
4. download the target game definition,
5. compute the best representation map,
6. instantiate the mapped skills and concepts in the target,
7. download initial state data for the target problem, and
8. solve the target problem using the mapped knowledge.

Only steps 7 and 8 above are timed, and reflected in the
TC agent’s performance score (though steps 4-6 were short
by comparison).  The TC and NTC agents both had access
to the same exploration skills and supporting background
knowledge to solve the target task.  They act as a fallback
for the TC agent if mapped knowledge does not suffice.

The lesion study examines transfer in 11 scenarios drawn
from the problem classes discussed earlier and designed by
an independent agency1.  The first three are homeomorphic
tasks (H), the next four are reformulation examples (R), and
the last four are cross-domain transfer tasks. Figure 3 pre-
sents the results of the lesion study. Each data point aver-
ages across ten trials of the given target problem for the TC
agent and the NTC agent, both. Values above zero indicate
positive transfer (the transfer case solution is faster than the
non-transfer case), values near zero indicate no transfer, and
values below zero indicate negative transfer.

The results show that representation mapping (the non-
lesion condition) produces positive transfer in 9 of 11
cases. The data contains some instances of very positive
transfer. For example, the 0.93 score in CrossDomain-4
indicates that the agent solved the problem more than 10
times faster with transferred knowledge. The negative trans-
fer in Wargame-R-1 is due to an incorrect representation
map (found in 8 of 10 TC trials) applied to correct skills,
while the effect in CrossDomain-1 is due to a partial map
that creates actionable but misleading skills.

The results show that the architecture without representa-
tion mapping (the lesion condition) produces c. zero trans-
fer in 9 of 11 cases. This effect is easy to understand. Ab-
sent a representation map, the system has no mechanism
for relating source skills to target needs, so the TC and
NTC agents both rely on exploratory behavior. This pro-
duces no net transfer. The main exception is Wargame H-2,
where the terms that differed between source and target were
bound to variables in ICARUS skills. This made source
skills directly applicable for the TC agent, leading to posi-
tive transfer.

More broadly, we can draw two conclusions from the
lesion study. First, representation mapping generates virtu-
ally all of the positive transfer observed in the 11 scenarios.
More exactly, it provides the architecture with the capacity
to exploit learned knowledge given the representational
divide characteristic of far transfer tasks. Second, this effect
appears robust across problem classes, as it explains all but
one case of positive transfer.
                                    
1  ICARUS was one of a set of agent architectures tested against
numeric transfer goals in the DARPA Transfer Learning Pro-
gram, via a formal evaluation process controlled by NRL.
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Figure 3. A lesion study showing the impact of representa-
tion mapping on transfer

Finally, we note that the scenarios were designed to af-
ford positive transfer. This is least true in the cross-domain
cases where the source-target relationship is unconstrained.
However, the homeomorphic and reformulation scenarios
obey what might be called a constant content assumption:
solutions for the source can solve the target task, given the
correct mapping among symbols. (This is evident in the
reformulation case, while the transformations defining the
homeomorphic class admit no new information in the tar-
get, implying source solutions are preserved). Experiments
with even more disparate source and target tasks would clar-
ify the limits of the representation mapping algorithm.

Related Work
There is an active research community studying transfer in
cognitive architectures. The DARPA Transfer Learning
Program has motivated a good deal of this work by the
same far transfer tasks explored here. Interestingly, research
on Soar and Companions has employed very different learn-
ing mechanisms (i.e., chunking vs. theory revision and
directed learning) but broadly similar transfer techniques.
Both map symbols via some form of structural analogy;
condition and rule matching in the case of Soar (Laird et
al., 1987), and the Structural Matching Engine (SME) in
Companions (Klenk &  Forbus, 2007). Our approach is
similar to SME (Falkenhainer  et al., 1989) in that it cre-
ates one to one predicate  mappings. Liu and Stone (2006)
also employ structural analogy to accomplish value func-
tion transfer across a representational divide.

Our approach also bears similarities to earlier work on
analogical problem solving. VanLehn and Jones' (1993)
CASCADE used a form of analogical search control to
guide top-down chaining through an AND-OR tree. Their
system did not map across representations, but it did store
semi-persistent mapping that it reused later in a given prob-
lem. Jones and Langley's (2005) EUREKA also used
analogical search control, in this case to direct a means-ends
problem solver that spread activation through stored sub-
problem decompositions. This system exhibited limited
ability for cross-domain transfer, but only when provided
with connections between predicates.  

Our research on structural analogy is distinguished by its
strong emphasis on pragmatic constraints, imposed by our
use of explanatory source analyses. Kedar-Cabelli's (1985)



early work also employed explanation in the service of
analogy, using a stored proof to show how the characteris-
tics of objects satisfy a given purpose (e.g., a styrofoam
cup lets one drink hot liquids just as does a ceramic mug
with a handle). Her system introduced the use of goal re-
gression to guide analogical reasoning, but it did not ad-
dress far transfer or support representation mapping.
Holyoak and  Thagard (1989) advocate the use of pragmatic
constraints  as well, but their ACME algorithm assumes
prior pragmatic  values for predicate matching and leaves
open the question  of how they arise.

Concluding Remarks
This paper has discussed the integration of a new capability
for knowledge transfer into an integrated cognitive architec-
ture. It operates by explaining solutions found in one do-
main using the vocabulary native to another, where the
symbols describing the domains need not be shared. We
have shown that the new mechanism, called representation
mapping, enables qualitatively new types of behavior, and
that it is enabled, in turn, by ICARUS’ assumptions about
representation, performance, and learning. We demonstrated
far transfer among isomorphic tasks, homeomorphic tasks,
and in less constrained cross-domain scenarios.  More im-
portantly, integrating far transfer generalized the architec-
ture’s previous abilities to encompass cumulative learning
and the continuous adaptation of past experience to current
goals, which increases the richness of the framework.

Our integration of representation mapping with Icarus is
not complete. Our future work will extend the system's
ability to support more complex mappings between source
and target domains.  We also intend to address the tradeoff
between performance and representation mapping in a real-
time environment, along with retrieval of previous source
experiences for a given target problem. In addition, we plan
to improve our representation mapping algorithm to use
feedback from applying transferred skills in the target do-
main. Together, these should produce a more adaptive archi-
tecture that can reuse its previously acquired knowledge in a
robust way.
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